Mutations in the presenilin-1 (PS1) gene underlie the most common form of familial dementia of the Alzheimer type (DAT). We demonstrated previously that the expression of PS1 with a M146V mutation in transgenic mice potentiates glutamate toxicity to neurons, due to an altered calcium homeostasis. Here, using a subtractive cDNA library approach, we report the identification of several genes, the altered expression of which may be associated with this unique PS1-related vulnerability to glutamate. The identified genes, including chaperonin subunit 2 and nucleophosmin 1/B23, are involved in the intracellular trafficking of proteins and ions. Northern blot analysis revealed that the effect of glutamate on calcium-binding proteins was augmented in neurons from PS1 mutation mice, compared with neurons from mice lacking other genes relevant to the pathogenesis of DAT (FE65 and APOE) or neurons from control wild-type mice. Interestingly, mRNA for two chaperone proteins were expressed at lower levels specifically in neurons from PS1 mutant mice. These findings suggest that PS1 mutations may, in part, contribute to the development of DAT via altered expression of chaperone proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1440-1827.2002.01398.xDOI Listing

Publication Analysis

Top Keywords

altered expression
8
neurons ps1
8
chaperone proteins
8
neurons
6
ps1
5
mice
5
alterations chaperone
4
chaperone protein
4
expression
4
protein expression
4

Similar Publications

The exposome is the measure of all the exposures of an individual in a lifetime and how those exposures relate to health. Exposomics is the emerging field of research to measure and study the totality of the exposome. Exposomics can assist with molecular medicine by furthering our understanding of how the exposome influences cellular and molecular processes such as gene expression, epigenetic modifications, metabolic pathways, and immune responses.

View Article and Find Full Text PDF

We aimed to assess the impact of splicing variants reported in our laboratory to gain insight into their clinical relevance. A total of 108 consecutive individuals, for whom 113 splicing variants had been reported, were selected for RNA-sequencing (RNA-seq), considering the gene expression in blood. A protocol was developed to perform RNA extraction and sequencing using the same sample (dried blood spots, DBS) provided for the DNA analysis, including library preparation and bioinformatic pipeline analysis.

View Article and Find Full Text PDF

The role of human epidermal growth factor 2 (HER2) in male breast cancer (MBC) is poorly defined. A comprehensive description of HER2 status was conducted. A total of 6,015 MBC patients from 45 studies and 135 MBC patients with sequencing data were identified.

View Article and Find Full Text PDF

KAT2B inhibits proliferation and invasion via inactivating TGF-β/Smad3 pathway-medicated autophagy and EMT in epithelial ovarian cancer.

Sci Rep

January 2025

Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.

Lysine acetyltransferase 2B (KAT2B) plays a crucial role in epigenetic regulation and tumor pathogenesis. Our study investigates KAT2B's function in epithelial ovarian cancer (EOC) using in vivo and in vitro methods. Immunohistochemistry showed the KAT2B expression in EOC tissues.

View Article and Find Full Text PDF

While the effect of amplification-induced oncogene expression in cancer is known, the impact of copy-number gains on "bystander" genes is less understood. We create a comprehensive map of dosage compensation in cancer by integrating expression and copy number profiles from over 8000 tumors in The Cancer Genome Atlas and cell lines from the Cancer Cell Line Encyclopedia. Additionally, we analyze 17 cancer open reading frame screens to identify genes toxic to cancer cells when overexpressed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!