In the male rat, serotoninergic neurons of the ventrolateral medulla send direct projections onto spinal preganglionic neurons that innervate the penis. The role of the paraventricular nucleus of the hypothalamus in the control of penile erection is well recognized. Our aim was to demonstrate anatomical relation between paraventricular neurons and medullary serotoninergic neurons innervating the penis. In adult male rats, stereotaxic iontophoretic injections of Phaseolus vulgaris leuco-agglutinin were performed in the paraventricular nucleus. Neurons in the ventrolateral medulla were retrogradely labelled using transneuronal retrograde transport of pseudorabies virus injected in the corpus cavernosum. Sections of the ventro-lateral medulla were processed for double immunofluorescence to reveal both Phaseolus vulgaris leuco-agglutinin and pseudorabies virus using specific antibodies. Sections were also processed for the simultaneous detection of pseudorabies virus and serotonin. Pseudorabies virus-infected neurons in the ventrolateral medulla were present in the nucleus paragigantocellularis, reticular formation of the medulla, raphe pallidus and raphe magnus. In the nucleus paragigantocellularis, all pseudorabies virus-infected-neurons were immunoreactive for serotonin. Some of them received Phaseolus vulgaris leuco-agglutinin-labelled varicose fibres that ran along the soma of pseudorabies virus-infected neurons. Confocal microscopy suggested the presence of several close appositions between them, which were demonstrated using three-dimensional reconstruction of serial optical sections. Our results show that paraventricular neurons send direct projections in the nucleus paragigantocellularis onto neurons that innervate the penis. They suggest a possible role of the paraventricular nucleus in penile erection through the control of descending serotoninergic raphe-spinal neurons. The neurotransmitter used in this pathway remains to be determined.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1460-9568.2002.02184.xDOI Listing

Publication Analysis

Top Keywords

paraventricular nucleus
16
nucleus paragigantocellularis
16
serotoninergic neurons
12
neurons ventrolateral
12
ventrolateral medulla
12
phaseolus vulgaris
12
pseudorabies virus
12
neurons
11
nucleus
8
nucleus hypothalamus
8

Similar Publications

The growing complexity of the control of the hypothalamic pituitary thyroid axis and brown adipose tissue by leptin.

Vitam Horm

January 2025

Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States. Electronic address:

The balance between food intake and energy expenditure is precisely regulated to maintain adipose stores. Leptin, which is produced in and released from adipose in direct proportion to its size, is a major contributor to this control and initiates its homeostatic responses largely via binding to leptin receptors (LepR) in the hypothalamus. Decreases in hypothalamic LepR binding signals starvation, leading to hunger and reduced energy expenditure, whereas increases in hypothalamic LepR binding can suppress food intake and increase energy expenditure.

View Article and Find Full Text PDF

The hypothalamus is the gray matter of the ventral portion of the diencephalon. The hypothalamus is the higher center of the autonomic nervous system and is involved in the regulation of various homeostatic mechanisms. It also modulates respiration by facilitating the respiratory network.

View Article and Find Full Text PDF

3,4-Methylenedioxymethamphetamine (MDMA) is a widely recognized entactogen frequently used recreationally. It is known for its interaction with the serotonin and oxytocin systems, which underlie its entactogenic effects in humans. Recently, we demonstrated that the gut-brain axis, mediated by the subdiaphragmatic vagus nerve, contributes to MDMA-induced resilience enhancement in rodents.

View Article and Find Full Text PDF

Repeated Amphetamine Exposure Blunted Angiotensin II-Induced Responses Mediated by AT Receptors.

Discov Med

January 2025

Department of Pharmacology "Otto Orsingher", Institute of Experimental Pharmacology of Córdoba (IFEC-CONICET), Faculty of Chemical Sciences, National University of Córdoba, X5000 Córdoba, Argentina.

Background: Angiotensin II, is critical in regulating the sympathetic and neuroendocrine systems through angiotensin II type 1 receptors (AT-R). Angiotensin II intracerebral administration increases water and sodium intake, as well as renal sodium excretion. Previously, our group has shown that AT-R is involved in behavioral and neurochemical sensitization induced by amphetamine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!