A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The putative role of vanilloid receptor-like protein-1 in mediating high threshold noxious heat-sensitivity in rat cultured primary sensory neurons. | LitMetric

The putative role of vanilloid receptor-like protein-1 in mediating high threshold noxious heat-sensitivity in rat cultured primary sensory neurons.

Eur J Neurosci

Department of Anaesthetics and Intensive Care, Imperial College, Faculty of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK.

Published: October 2002

High threshold noxious heat-activated currents and vanilloid receptor-like protein-1 expression were studied in rat cultured primary sensory neurons to find out the molecule(s) responsible for high threshold noxious heat-sensitivity. The average temperature threshold and amplitude of high threshold noxious heat-activated currents were 51.6 +/- 0.13 degrees C and -2.0 +/- 0.1nA (at a holding potential of -60 mV), respectively. The current-voltage relationship of high threshold noxious heat-activated currents was linear at positive membrane potentials, while it showed a weak inward rectification at negative membrane potentials. The average reversal potential measured in control intracellular and extracellular solutions was 4.5 +/- 0.9 mV (n = 6). Ionic substitutions revealed that the high threshold noxious heat-activated current is a nonselective cationic current with calculated ionic permeabilities of Cs+ : Na+ : Ca2+ (1 : 1.3 : 4.5). Consecutive stimuli reduced the heat threshold from 52.2 +/- 1 to 48.4 +/- 1.4 degrees C and then to 44 +/- 0.7 degrees C (n = 3). High threshold noxious heat-activated currents could dose-dependently and reversibly be reduced by ruthenium red (100 nm-10 micro m) but not by capsazepine (10 micro m). The average longest diameter of high threshold noxious heat-sensitive neurons was 31.48 +/- 0.5 micro m (A = approximately 778 micro m2; n = 77). Twenty-three percent of the total neuronal population expressed vanilloid receptor-like protein-1. The average area of the vanilloid receptor-like protein-1-immunopositive cells was 1,696 +/- 65.3 micro m2 (d = approximately 46 micro m). Vanilloid receptor-like protein-1-expressing neurons did not express the vanilloid receptor 1. Comparison of our data with results obtained in vanilloid receptor-like protein-1-expressing non-neuronal cells and previous immunohistochemical findings suggests that high threshold noxious heat-activated currents are produced by vanilloid receptor-like protein-1 and that high threshold heat-sensitive dorsal root ganglion neurons are the perikarya of type I noxious heat-sensitive fibers.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1460-9568.2002.02231.xDOI Listing

Publication Analysis

Top Keywords

high threshold
40
threshold noxious
36
vanilloid receptor-like
28
noxious heat-activated
24
heat-activated currents
20
receptor-like protein-1
16
threshold
12
high
10
noxious
10
vanilloid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!