Quantized double-layer charging of highly monodisperse metal nanoparticles.

J Am Chem Soc

Kenan Laboratories of Chemistry, University of North Carolina CB#3290, Chapel Hill, North Carolina 27599-3290, USA.

Published: November 2002

We describe unprecedented resolution of electrochemically observed quantized double layer (QDL) charging, attained with use of reduced solution temperatures and with an annealing procedure that produces hexanethiolate monolayer protected gold clusters (C6 MPCs) with a high level of monodispersity in charging capacitance, C(CLU). The spacing DeltaV = e/C(CLU) on the electrochemical potential axis between one electron changes in the electronic charge of nanoscopic metal particles is determined by their effective capacitance C(CLU). The high monodispersity of the C6 MPCs with Au(140) cores facilitates (a) detailed rotated disk and cyclic voltammetric measurements, (b) simulation of QDL waveshapes based on assumed reversible, multivalent redox-like behavior, (c) determination of nanoparticle diffusion rates, and (d) observation of as many as 13 changes in the MPC charge state, from MPC(6-) to MPC(7+). The single electron QDL charging peaks are quite evenly spaced (DeltaV constant) at potentials near the MPC potential of zero charge, but are irregularly spaced at more positive and negative potentials. The irregular spacing is difficult to rationalize with classical double layer capacitance ideas and is proposed to arise from a correspondingly structured (e.g., not smooth) density of electronic states of the nanoparticle core, resulting from its small HOMO/LUMO gap and incipiently molecule-like behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja027724qDOI Listing

Publication Analysis

Top Keywords

double layer
8
qdl charging
8
capacitance cclu
8
quantized double-layer
4
charging
4
double-layer charging
4
charging highly
4
highly monodisperse
4
monodisperse metal
4
metal nanoparticles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!