An aerobic field-injection experiment was performed to study the degradation and migration of different herbicides at trace levels in an aerobic aquifer at Vejen, Denmark. Mecoprop (MCPP) and dichlorprop monitored in a dense network of multilevel samplers were both degraded within a distance of 1 m after a period of 120 days. The study showed that no preferential degradation of the (R)- and (S)-enantiomers of MCPP and of dichlorprop took place as the enantiomeric forms of the phenoxy acids were degraded simultaneously in the aquifer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0043-1354(02)00131-8 | DOI Listing |
Sci Total Environ
September 2021
Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
Phenoxyalkanoic acids (PAAs), synthetic indole-3-acetic acid (IAA) auxin mimics, are widely used as herbicides. Many PAAs are chiral molecules and show strong enantioselectivity in their herbicidal activity; however, there is a lack of understanding of mechanisms driving enantioselectivity. This study aimed to obtain a mechanistic understanding of PAA enantioselectivity using dichlorprop and mecoprop as model PAA compounds.
View Article and Find Full Text PDFAppl Environ Microbiol
February 2016
Department of Geochemistry, Geological Survey of Denmark & Greenland, Copenhagen, Denmark
In this study, we investigated the establishment of natural bacterial degraders in a sand filter treating groundwater contaminated with the phenoxypropionate herbicides (RS)-2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and (RS)-2-(2,4-dichlorophenoxy)propanoic acid (DCPP) and the associated impurity/catabolite 4-chlorophenoxypropanoic acid (4-CPP). A pilot facility was set up in a contaminated landfill site. Anaerobic groundwater was pumped up and passed through an aeration basin and subsequently through a rapid sand filter, which is characterized by a short residence time of the water in the filter.
View Article and Find Full Text PDFTalanta
February 2014
Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Agrifood Campus of International Excellence, University of Córdoba, Edificio Anexo Marie Curie, Campus de Rabanales, 14071 Córdoba, Spain. Electronic address:
A simple, sensitive, rapid and economic method was developed for the quantification of enantiomers of chiral pesticides as mecoprop (MCPP) and dichlorprop (DCPP) in soil samples using supramolecular solvent-based microextraction (SUSME) combined with liquid chromatography coupled to mass spectrometry (LC-MS/MS). SUSME has been described for the extraction of chiral pesticides in water, but this is firstly applied to soil samples. MCPP and DCPP are herbicides widely used in agriculture that have two enantiomeric forms (R- and S-) differing in environmental fate and toxicity.
View Article and Find Full Text PDFAnal Chim Acta
January 2013
Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, University of Córdoba, Edificio Anexo Marie Curie, Campus de Rabanales, 14071 Córdoba, Spain.
Liquid chromatography (LC)/tandem mass spectrometry (MS/MS) after supramolecular solvent-based microextraction (SUSME) was firstly used in this work for the enantioselective determination of chiral pesticides in natural waters. The method developed for the quantitation of the R- and S-enantiomers of mecoprop (MCPP) and dichlorprop (DCPP) involved the extraction of the herbicides in a supramolecular solvent (SUPRAS) made up of reverse aggregates of dodecanoic acid (DoA), analyte re-extraction in acetate buffer (pH = 5.0), separation of the target enantiomers on a chiral column of permethylated α-cyclodextrin under isocratic conditions, and detection of the daughter ions (m/z = 140.
View Article and Find Full Text PDFJ AOAC Int
November 2007
Montana Department of Agriculture, Montana State University, McCall Hall, Bozeman, MT 59717, USA.
The method presented uses reversed-phase liquid chromatography with negative electrospray ionization and tandem mass spectrometry to analyze 9 chlorinated acid herbicides in soil and vegetation matrixes: clopyralid, dicamba, MCPP, MCPA, 2,4-DP, 2,4-D, triclopyr, 2,4-DB, and picloram. A 20 g portion is extracted with a basic solution and an aliquot acidified and micropartitioned with 3 mL chloroform. Vegetation samples are subjected to an additional cleanup with a mixed-mode anion exchange solid-phase extraction cartridge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!