The earliest decision in vertebrate neural development is the acquisition of a neural identity by embryonic ectodermal cells. The default model for neural induction postulates that neural fate specification in the vertebrate embryo occurs by inhibition of epidermal inducing signals in the gastrula ectoderm. Bone morphogenetic proteins (BMPs) act as epidermal inducers, and all identified direct neural inducers block BMP signaling either intra- or extracellularly. Although the mechanism of action of the secreted neural inducers has been elucidated, the relevance of intracellular BMP inhibitors in neural induction is not clear. In order to address this issue and to identify downstream targets after BMP inhibition, we have monitored the transcriptional changes in ectodermal explants neuralized by Smad7 using a Xenopus laevis 5000-clone gastrula-stage cDNA microarray. We report the identification and initial characterization of 142 genes whose transcriptional profiles change in the neuralized explants. In order to address the potential involvement during neural induction of genes identified in the array, we performed gain-of-function studies in ectodermal explants. This approach lead to the identification of four genes that can function as neural inducers in Xenopus and three others that can synergize with known neural inducers in promoting neural fates. Based on these studies, we propose a role for post-transcriptional control of gene expression during neural induction in vertebrates and present a model whereby sustained BMP inhibition is promoted partly through the regulation of TGFbeta activated kinase (TAK1) activity by a novel TAK1-binding protein (TAB3).

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.00097DOI Listing

Publication Analysis

Top Keywords

neural induction
20
neural inducers
16
neural
13
xenopus laevis
8
bmp signaling
8
novel tak1-binding
8
tak1-binding protein
8
order address
8
bmp inhibition
8
ectodermal explants
8

Similar Publications

The evolutionary transition from simple chordate body plans to complex vertebrate body plans was driven by the acquisition of the neural crest, a stem cell population that retains broad, multi-germ layer developmental potential long after most embryonic cells have become lineage restricted. We have previously shown that neural crest cells share significant gene regulatory architecture with pluripotent blastula stem cells. Here we examine the roles that Krüppel-like Family (Klf) transcription factors play in these stem cell populations.

View Article and Find Full Text PDF

Perception of without infection induces in .

MicroPubl Biol

January 2025

Molecular and Integrative Physiology Department, University of Michigan-Ann Arbor, Ann Arbor, Michigan, United States.

pathogenic susceptibility is influenced by the worm's detection of its environment and its capacity to resist and resolve damage following infection. Here, we use a model where worms can sense, but not ingest, the pathogen (EF) We identify that perception of EF without infection induces the stress-response gene further identify that neural and intestinal signaling genes are necessary for induction without active infection. Finally, we show that overexpression is sufficient to extend lifespan with EF exposure, while KO is not detrimental, suggesting that additional expression benefits worms in this condition.

View Article and Find Full Text PDF

Prediction of induction motor faults using machine learning.

Heliyon

January 2025

Electrical and Information Engineering Department, Covenant University, P.M.B 1023, Ota, 112212, Ogun State, Nigeria.

Unplanned downtime in industrial sectors presents significant challenges, impacting both production efficiency and profitability. To tackle this issue, companies are actively working towards optimizing their operations and reducing disruptions that hinder their ability to meet customer demands and financial goals. Predictive maintenance, utilizing advanced technologies like data analytics, machine learning, and IoT devices, offers real-time equipment data monitoring and analysis.

View Article and Find Full Text PDF

Neurological function is restored post-ischemic stroke in zebrafish, with aging exerting a deleterious effect on its pathology.

Brain Res Bull

January 2025

Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; Research Institute of Disaster Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; Health and Disease Omics Center, Chiba University, Chiba, Japan. Electronic address:

Ischemic stroke (IS) is a pathological condition characterized by the cessation of blood flow due to factors such as thrombosis, inflicting severe damage to the cranial nervous system and resulting in numerous disabilities including memory impairments and hemiplegia. Despite the critical nature of this condition, therapeutic options remain limited, with a pressing challenge being the development of treatments aimed at restoring neurological function. In this study, we leveraged zebrafish, renowned for their exceptional regenerative capabilities, to analyze the pathology of IS and the subsequent recovery process.

View Article and Find Full Text PDF

Efficient and Rapid Generation of Neural Stem Cells by Direct Conversion Fibroblasts with Single microRNAs.

Stem Cells

January 2025

Medicine and Pharmacy Research Center, and Yantai Key Laboratory for Stem Cell Biology and Regenerative Medicine, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, China.

Neural stem cells (NSCs) have great potentials in the application of neurodegenerative disease therapy, drug screening, and disease modeling. However, current approaches for induced NSCs (iNSCs) generation from somatic cells are still slow and inefficient. Here we establish a rapid and efficient method of iNSCs generation from human and mouse fibroblasts by single microRNAs (miR-302a).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!