A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Regulation of the farnesoid X receptor (FXR) by bile acid flux in rabbits. | LitMetric

We investigated the roles of hydrophobic deoxycholic acid (DCA) and hydrophilic ursocholic acid (UCA) in the regulation of the orphan nuclear farnesoid X receptor (FXR) in vivo. Rabbits with bile fistula drainage (removal of the endogenous bile acid pool), rabbits with bile fistula drainage and replacement with either DCA or UCA, and intact rabbits fed 0.5% cholic acid (CA) (enlarged endogenous bile acid pool) were studied. After bile fistula drainage, cholesterol 7alpha-hydroxylase (CYP7A1) mRNA and activity levels increased, FXR-mediated transcription was decreased, and FXR mRNA and nuclear protein levels declined. Replacing the enterohepatic bile acid pool with DCA restored FXR mRNA and nuclear protein levels and activated FXR-mediated transcription as evidenced by the increased expression of its target genes, SHP and BSEP, and decreased CYP7A1 mRNA level and activity. Replacing the bile acid pool with UCA also restored FXR mRNA and nuclear protein levels but did not activate FXR-mediated transcription, because the SHP mRNA level and CYP7A1 mRNA level and activity were unchanged. Feeding CA to intact rabbits expanded the bile acid pool enriched with the FXR high affinity ligand, DCA. FXR-mediated transcription became activated as shown by increased SHP and BSEP mRNA levels and decreased CYP7A1 mRNA level and activity but did not change FXR mRNA or nuclear protein levels. Thus, both hydrophobic and hydrophilic bile acids are effective in maintaining FXR mRNA and nuclear protein levels. However, the activating ligand (DCA) in the enterohepatic flux is necessary for FXR-mediated transcriptional regulation, which leads to down-regulation of CYP7A1.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M209176200DOI Listing

Publication Analysis

Top Keywords

bile acid
24
acid pool
20
fxr mrna
20
mrna nuclear
20
nuclear protein
20
protein levels
20
cyp7a1 mrna
16
fxr-mediated transcription
16
mrna level
16
bile fistula
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!