Two sarcoendoplasmic reticulum Ca(2+)-ATPases, SERCA3 and SERCA2b, are expressed in pancreatic islets. Immunocytochemistry showed that SERCA3 is restricted to beta-cells in the mouse pancreas. Control and SERCA3-deficient mice were used to evaluate the role of SERCA3 in beta-cell cytosolic-free Ca(2+) concentration ([Ca(2+)](c)) regulation, insulin secretion, and glucose homeostasis. Basal [Ca(2+)](c) was not increased by SERCA3 ablation. Stimulation with glucose induced a transient drop in basal [Ca(2+)](c) that was suppressed by inhibition of all SERCAs with thapsigargin (TG) but unaffected by selective SERCA3 ablation. Ca(2+) mobilization by acetylcholine was normal in SERCA3-deficient beta-cells. In contrast, [Ca(2+)](c) oscillations resulting from intermittent glucose-stimulated Ca(2+) influx and [Ca(2+)](c) transients induced by pulses of high K(+) were similarly affected by SERCA3 ablation or TG pretreatment of control islets; their amplitude was increased and their slow descending phase suppressed. This suggests that, during the decay of each oscillation, the endoplasmic reticulum releases Ca(2+) that was pumped by SERCA3 during the upstroke phase. SERCA3 ablation increased the insulin response of islets to 15 mmol/l glucose. However, basal and postprandial plasma glucose and insulin concentrations in SERCA3-deficient mice were normal. In conclusion, SERCA2b, but not SERCA3, is involved in basal [Ca(2+)](c) regulation in beta-cells. SERCA3 becomes operative when [Ca(2+)](c) rises and is required for normal [Ca(2+)](c) oscillations in response to glucose. However, a lack of SERCA3 is insufficient in itself to alter glucose homeostasis or impair insulin secretion in mice.

Download full-text PDF

Source
http://dx.doi.org/10.2337/diabetes.51.11.3245DOI Listing

Publication Analysis

Top Keywords

serca3 ablation
20
serca3
12
insulin secretion
12
basal [ca2+]c
12
impair insulin
8
sarcoendoplasmic reticulum
8
serca3-deficient mice
8
[ca2+]c
8
[ca2+]c regulation
8
glucose homeostasis
8

Similar Publications

Niemann-Pick C1 protein regulates platelet membrane-associated calcium ion signaling in thrombo-occlusive diseases in mice.

J Thromb Haemost

July 2023

DFG Heisenberg Group Thrombocardiology; Department of Cardiology, Angiology and Cardiovascular Medicine, University of Tübingen, Germany. Electronic address:

Background: Pathophysiologic platelet activation leads to thrombo-occlusive diseases such as myocardial infarction or ischemic stroke. Niemann-Pick C1 protein (NPC1) is involved in the regulation of lysosomal lipid trafficking and calcium ion (Ca) signaling, and its genetic mutation causes a lysosomal storage disorder. Lipids and Ca are key players in the complex orchestration of platelet activation.

View Article and Find Full Text PDF

Objective: Sarco-endoplasmic reticulum Ca(2+)-ATPase 2b (SERCA2b) and SERCA3 pump Ca(2+) in the endoplasmic reticulum (ER) of pancreatic β-cells. We studied their role in the control of the free ER Ca(2+) concentration ([Ca(2+)](ER)) and the role of SERCA3 in the control of insulin secretion and ER stress.

Research Design And Methods: β-Cell [Ca(2+)](ER) of SERCA3(+/+) and SERCA3(-/-) mice was monitored with an adenovirus encoding the low Ca(2+)-affinity sensor D4 addressed to the ER (D4ER) under the control of the insulin promoter.

View Article and Find Full Text PDF

Two sarcoendoplasmic reticulum Ca(2+)-ATPases, SERCA3 and SERCA2b, are expressed in pancreatic islets. Immunocytochemistry showed that SERCA3 is restricted to beta-cells in the mouse pancreas. Control and SERCA3-deficient mice were used to evaluate the role of SERCA3 in beta-cell cytosolic-free Ca(2+) concentration ([Ca(2+)](c)) regulation, insulin secretion, and glucose homeostasis.

View Article and Find Full Text PDF

The sarcoplasmic reticulum and smooth muscle function: evidence from transgenic mice.

Novartis Found Symp

February 2003

Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH 45267-0576, USA.

Smooth muscle Ca2+ handling is of major importance to understanding its function. A new approach utilizes molecular biology to develop transgenic mouse models in which the protein constituents of the various Ca2+ regulatory subsystems have been altered. Gene-targeted or gene-ablated (knockout) mice have been reported for the sarcoplasmic reticulum (SR) Ca2+ pump isoforms SERCA2, SERCA2a and SERCA3, the plasma membrane Ca2+ pump isoforms, PMCA1, PMCA2 and PMCA4, and the SR-associated protein, phospholamban (PLB), an inhibitor of SERCA2.

View Article and Find Full Text PDF

Ablation of the SERCA3 gene alters epithelium-dependent relaxation in mouse tracheal smooth muscle.

Am J Physiol

August 1999

Department of Molecular and Cellular Physiology, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0576, USA.

Sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 3 (SERCA3), an isoform of the intracellular Ca(2+) pump that has been shown to mediate endothelium-dependent relaxation of vascular smooth muscle, is also expressed in tracheal epithelium. To determine its possible role in regulation of airway mechanical function, we compared tracheal contractility in gene-targeted mice deficient in SERCA3 (SERCA3(-)) with that in wild-type tracheae. Cumulative addition of ACh elicited concentration-dependent increases in isometric force (ED(50) = 2 microM, maximum force = 8 mN/mm(2)) that were identical in SERCA3(-) and wild-type tracheae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!