Two sarcoendoplasmic reticulum Ca(2+)-ATPases, SERCA3 and SERCA2b, are expressed in pancreatic islets. Immunocytochemistry showed that SERCA3 is restricted to beta-cells in the mouse pancreas. Control and SERCA3-deficient mice were used to evaluate the role of SERCA3 in beta-cell cytosolic-free Ca(2+) concentration ([Ca(2+)](c)) regulation, insulin secretion, and glucose homeostasis. Basal [Ca(2+)](c) was not increased by SERCA3 ablation. Stimulation with glucose induced a transient drop in basal [Ca(2+)](c) that was suppressed by inhibition of all SERCAs with thapsigargin (TG) but unaffected by selective SERCA3 ablation. Ca(2+) mobilization by acetylcholine was normal in SERCA3-deficient beta-cells. In contrast, [Ca(2+)](c) oscillations resulting from intermittent glucose-stimulated Ca(2+) influx and [Ca(2+)](c) transients induced by pulses of high K(+) were similarly affected by SERCA3 ablation or TG pretreatment of control islets; their amplitude was increased and their slow descending phase suppressed. This suggests that, during the decay of each oscillation, the endoplasmic reticulum releases Ca(2+) that was pumped by SERCA3 during the upstroke phase. SERCA3 ablation increased the insulin response of islets to 15 mmol/l glucose. However, basal and postprandial plasma glucose and insulin concentrations in SERCA3-deficient mice were normal. In conclusion, SERCA2b, but not SERCA3, is involved in basal [Ca(2+)](c) regulation in beta-cells. SERCA3 becomes operative when [Ca(2+)](c) rises and is required for normal [Ca(2+)](c) oscillations in response to glucose. However, a lack of SERCA3 is insufficient in itself to alter glucose homeostasis or impair insulin secretion in mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/diabetes.51.11.3245 | DOI Listing |
J Thromb Haemost
July 2023
DFG Heisenberg Group Thrombocardiology; Department of Cardiology, Angiology and Cardiovascular Medicine, University of Tübingen, Germany. Electronic address:
Background: Pathophysiologic platelet activation leads to thrombo-occlusive diseases such as myocardial infarction or ischemic stroke. Niemann-Pick C1 protein (NPC1) is involved in the regulation of lysosomal lipid trafficking and calcium ion (Ca) signaling, and its genetic mutation causes a lysosomal storage disorder. Lipids and Ca are key players in the complex orchestration of platelet activation.
View Article and Find Full Text PDFDiabetes
October 2011
Pole d’Endocrinologie, Diabète, et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
Objective: Sarco-endoplasmic reticulum Ca(2+)-ATPase 2b (SERCA2b) and SERCA3 pump Ca(2+) in the endoplasmic reticulum (ER) of pancreatic β-cells. We studied their role in the control of the free ER Ca(2+) concentration ([Ca(2+)](ER)) and the role of SERCA3 in the control of insulin secretion and ER stress.
Research Design And Methods: β-Cell [Ca(2+)](ER) of SERCA3(+/+) and SERCA3(-/-) mice was monitored with an adenovirus encoding the low Ca(2+)-affinity sensor D4 addressed to the ER (D4ER) under the control of the insulin promoter.
Diabetes
November 2002
Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, Brussels, Belgium.
Two sarcoendoplasmic reticulum Ca(2+)-ATPases, SERCA3 and SERCA2b, are expressed in pancreatic islets. Immunocytochemistry showed that SERCA3 is restricted to beta-cells in the mouse pancreas. Control and SERCA3-deficient mice were used to evaluate the role of SERCA3 in beta-cell cytosolic-free Ca(2+) concentration ([Ca(2+)](c)) regulation, insulin secretion, and glucose homeostasis.
View Article and Find Full Text PDFNovartis Found Symp
February 2003
Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH 45267-0576, USA.
Smooth muscle Ca2+ handling is of major importance to understanding its function. A new approach utilizes molecular biology to develop transgenic mouse models in which the protein constituents of the various Ca2+ regulatory subsystems have been altered. Gene-targeted or gene-ablated (knockout) mice have been reported for the sarcoplasmic reticulum (SR) Ca2+ pump isoforms SERCA2, SERCA2a and SERCA3, the plasma membrane Ca2+ pump isoforms, PMCA1, PMCA2 and PMCA4, and the SR-associated protein, phospholamban (PLB), an inhibitor of SERCA2.
View Article and Find Full Text PDFAm J Physiol
August 1999
Department of Molecular and Cellular Physiology, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0576, USA.
Sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 3 (SERCA3), an isoform of the intracellular Ca(2+) pump that has been shown to mediate endothelium-dependent relaxation of vascular smooth muscle, is also expressed in tracheal epithelium. To determine its possible role in regulation of airway mechanical function, we compared tracheal contractility in gene-targeted mice deficient in SERCA3 (SERCA3(-)) with that in wild-type tracheae. Cumulative addition of ACh elicited concentration-dependent increases in isometric force (ED(50) = 2 microM, maximum force = 8 mN/mm(2)) that were identical in SERCA3(-) and wild-type tracheae.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!