This review presents the structural and functional role of phospholipids in chromatin and nuclear matrix as well as the difference in composition and turnover compared to those present in the nuclear membrane. Nuclei have a very active lipid metabolism which seems to play an important role in the transduction of the signals to the genome in response to agonists acting at the plasma membrane level. The evidence on the presence of phospholipid-calcium-dependent protein kinase C (PKC) in nuclei and enzymes of phospholipids turnover is given. Protein kinase C interacts with nuclear phosphoinositol and sphingomyelin cycles products. This fact evidences about possibility that signal transduction events could also occur at the nuclear level during induction of cell proliferation, differentiation and apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1567-5394(02)00135-4 | DOI Listing |
Adv Sci (Weinh)
January 2025
Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
Hydrogen sulfide (HS)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC).
View Article and Find Full Text PDFSci Rep
January 2025
Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China.
Previous studies highlighting the pivotal function of the S100A8 protein have shown that inflammation and vascular endothelial harm play a major role in deep vein thrombosis (DVT) development, as evidenced by earlier studies highlighting the pivotal function of the S100 calcium-binding protein A8 (S100A8). Therefore, we aimed to establish a connection between S100A8 and DVT and investigate the role of S100A8 in DVT development. Blood specimens were taken from 23 patients with DVT and 31 controls.
View Article and Find Full Text PDFSci Rep
January 2025
Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Bioscience and Biotechnology, Banasthali Vidyapith, Niwai-Tonk, Rajasthan, 304022, India.
The prominence of circular RNAs (circRNAs) has surged in cancer research due to their distinctive properties and impact on cancer development. This review delves into the role of circRNAs in four key cancer types: colorectal cancer (CRC), gastric cancer (GC), liver cancer (HCC), and lung cancer (LUAD). The focus lies on their potential as cancer biomarkers and drug targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!