It has been hypothesized [Colpaert, F.C., 1994. In: Briley, M., Marien, M. (Eds.), Noradrenergic Mechanisms in Parkinson's Disease. CRC Press, Boca Raton, FL, pp. 225-254] that a deficiency in the noradrenergic system originating from the locus coeruleus is a decisive factor in the progression of central neurodegenerative disorders including Alzheimer's disease, and that treatments which boost noradrenergic transmission (e.g. via blockade of alpha(2)-adrenoceptors) could provide both symptomatic and trophic benefits against the disease. Studies in the rat in vivo demonstrating that the selective alpha(2)-adrenoceptor antagonist dexefaroxan increases acetylcholine release in the cortex, improves measures of cognitive performance and protects against excitotoxin lesions, support this concept. As a further test of the hypothesis, we investigated the effect of dexefaroxan in a rat model of unilateral cortical devascularization that induces a loss of the cortical cholinergic terminal network and a retrograde degeneration of the cholinergic projections that originate in the nucleus basalis magnocellularis. Lesioned and sham-operated rats received a 28-day subcutaneous infusion of dexefaroxan (0.63 mg/rat/day) or vehicle, delivered by osmotic minipumps implanted on the day of the cortical devascularization procedure. In lesioned rats, the dexefaroxan treatment was associated with a significantly higher number and size of vesicular acetylcholine transporter-immunoreactive boutons in comparison to the vehicle treatment; this effect was most marked within cortical layer V. Dexefaroxan also significantly reduced the atrophy of cholinergic neurons within the nucleus basalis magnocellularis. Dexefaroxan had no observable effect on any of these parameters in sham-operated cohorts. These results show that systemically administered dexefaroxan mitigates cholinergic neuronal degeneration in vivo, and provide further evidence for a therapeutic potential of the drug in neurodegenerative diseases such as Alzheimer's disease, where central cholinergic function is progressively compromised.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0306-4522(02)00406-2 | DOI Listing |
No Shinkei Geka
July 2024
Department of Neurosurgery, Institute of Medicine, University of Tsukuba.
During surgery for meningioma, basic surgical techniques and strategies required for the removal of the tumor are common, particularly for tumors located superficially, such as convexity, parasagittal, and falx meningiomas. Four basic surgical techniques, including detachment; devascularization; debulking; and dissection should be combined and repeated in appropriate sequence, tailored to the specific conditions of each tumor. This eventually enables the total circumferential dissection of the tumor from the surrounding tissues.
View Article and Find Full Text PDFJ Orthop Translat
July 2024
Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China.
World Neurosurg
December 2023
Department of Neurosurgery, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
Front Pharmacol
June 2021
Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
Following brain injury or in neurodegenerative diseases, astrocytes become reactive and may suffer pathological remodeling, features of which are the loss of their homeostatic functions and a pro-inflammatory gain of function that facilitates neurodegeneration. Pharmacological intervention to modulate this astroglial response and neuroinflammation is an interesting new therapeutic research strategy, but it still requires a deeper understanding of the underlying cellular and molecular mechanisms of the phenomenon. Based on the known microglial-astroglial interaction, the prominent role of the nuclear factor kappa B (NF-κB) pathway in mediating astroglial pathological pro-inflammatory gain of function, and its ability to recruit chromatin-remodeling enzymes, we first explored the microglial role in the initiation of astroglial pro-inflammatory conversion and then monitored the progression of epigenetic changes in the astrocytic chromatin.
View Article and Find Full Text PDFEur J Neurosci
December 2018
Unidad de Terapia Celular, Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela.
Understanding endogenous neurogenesis and neuronal replacement to mature circuits is a topic of discussion as a therapeutic alternative under acute and chronic neurodegenerative disorders. Adaptive neurogenic response may result as a result of ischemia which could support long-term recovery of behavioral functions. Endogenous sources of neural progenitors may be stimulated by changes in blood flow or neuromodulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!