A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae. | LitMetric

We report a study on the adaptive response of a wild-type wine Saccharomyces cerevisiae strain, isolated from natural spontaneous grape must, to mild and progressive physiological stresses due to fermentation. We observed by two-dimensional electrophoresis how the yeast proteome changes during glucose exhaustion, before the cell enters its complete stationary phase. On the basis of their identification, the proteins representing the S. cerevisiae proteomic response to fermentation stresses were divided into three classes: repressed proteins, induced proteins and autoproteolysed proteins. In an overall view, the proteome adaptation of S. cerevisiae at the time of glucose exhaustion seems to be directed mainly against the effects of ethanol, causing both hyperosmolarity and oxidative responses. Stress-induced autoproteolysis is directed mainly towards specific isoforms of glycolytic enzymes. Through the use of a wild-type S. cerevisiae strain and PMSF, a specific inhibitor of vacuolar proteinase B, we could also distinguish the specific contributions of the vacuole and the proteasome to the autoproteolytic process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1223135PMC
http://dx.doi.org/10.1042/BJ20020140DOI Listing

Publication Analysis

Top Keywords

proteomic response
8
fermentation stresses
8
wild-type wine
8
saccharomyces cerevisiae
8
cerevisiae strain
8
glucose exhaustion
8
cerevisiae
5
response physiological
4
physiological fermentation
4
stresses wild-type
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!