A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A distinct subclass of mammalian striated myosins: structure and molecular evolution of "superfast" or masticatory myosin heavy chain. | LitMetric

A distinct subclass of mammalian striated myosins: structure and molecular evolution of "superfast" or masticatory myosin heavy chain.

J Mol Evol

Department of Physiology and Institute for Biomedical Research, Building F13, The University of Sydney, Sydney, NSW 2006, Australia.

Published: November 2002

"Superfast" or masticatory myosin is the molecular motor in the powerful and specialized jaw-closing muscles of carnivores, folivores, and frugivores. This myosin presumably underpins the unusual high force and moderate shortening velocity of muscle fibers expressing it. Here, we report the cloning and sequencing of the cDNA encoding the full-length masticatory myosin heavy chain (MyHC) from cat temporalis muscle. This was obtained by immunoscreening a cDNA expression library and RACE-PCR (rapid amplification of cDNA ends-PCR). Sequence comparisons at the DNA and amino acid levels show that masticatory MyHC has less than 70% homology to known striated MyHCs, compared with 87-96% between other mammalian fast isoforms themselves. Nucleotide substitution rates at the nonsynonymous sites between masticatory MyHC and other mammalian striated MyHCs are considerably higher than between these striated MyHCs themselves. Phylogenetic analysis revealed that masticatory MyHC diverged from invertebrate MyHC before the avian cardiac MyHC subclass and the mammalian fast/developmental and slow/cardiac MyHC subclasses. Masticatory MyHC is thus a distinct new subclass of vertebrate striated myosins. The early divergence from invertebrate MyHC, combined with immunochemical evidence of its expression in reptilian and shark jaw-closing muscles, suggests that masticatory MyHC evolved in early gnathostomes, driven by benefits derived from powerful jaw closure. During the mammalian radiation, some taxa continued to express it, while others adapted to new types of food and eating habits by replacing masticatory MyHC with more appropriate isoforms normally found in limb and cardiac muscles.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00239-002-2349-6DOI Listing

Publication Analysis

Top Keywords

masticatory myhc
24
masticatory myosin
12
striated myhcs
12
myhc
11
masticatory
9
distinct subclass
8
subclass mammalian
8
mammalian striated
8
striated myosins
8
"superfast" masticatory
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!