Biogenesis of a superfamily of surface structures by gram-negative bacteria requires the chaperone/usher pathway, a terminal branch of the general secretory pathway. In this pathway a periplasmic chaperone works together with an outer membrane usher to direct substrate folding, assembly, and secretion to the cell surface. We analyzed the structure and function of the PapC usher required for P pilus biogenesis by uropathogenic Escherichia coli. Structural analysis indicated PapC folds as a beta-barrel with short extracellular loops and extensive periplasmic domains. Several periplasmic regions were localized, including two domains containing conserved cysteine pairs. Functional analysis of deletion mutants revealed that the PapC C terminus was not required for insertion of the usher into the outer membrane or for proper folding. The usher C terminus was not necessary for interaction with chaperone-subunit complexes in vitro but was required for pilus biogenesis in vivo. Interestingly, coexpression of PapC C-terminal truncation mutants with the chromosomal fim gene cluster coding for type 1 pili allowed P pilus biogenesis in vivo. These studies suggest that chaperone-subunit complexes target an N-terminal domain of the usher and that subunit assembly into pili depends on a subsequent function provided by the usher C terminus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC151958 | PMC |
http://dx.doi.org/10.1128/JB.184.22.6260-6269.2002 | DOI Listing |
Microb Biotechnol
January 2025
Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA.
The increasing threat of antibiotic resistance underscores the urgent need for innovative strategies to combat infectious diseases, including the development of antivirulants. Microbial pathogens rely on their virulence factors to initiate and sustain infections. Antivirulants are small molecules designed to target virulence factors, thereby attenuating the virulence of infectious microbes.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Frankfurt, Germany. Electronic address:
c-di-GMP is an important second messenger in bacteria regulating, for example motility, biofilm formation, cell wall biosynthesis, infectivity, and natural transformability. It binds to a multitude of intracellular receptors. This includes proteins containing general secretory pathway II (GSPII) domains such as the N-terminal domain of the Vibrio cholerae ATPase MshE (MshEN) which binds c-di-GMP with two copies of a 24-amino acids sequence motif.
View Article and Find Full Text PDFFront Microbiol
September 2024
Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States.
is an emerging foodborne pathogen. We previously reported that some avian Shiga toxin-producing strains exhibited higher or comparable cytotoxicity in Vero-d2EGFP cells with several enterohemorrhagic (EHEC) outbreak strains. To better understand the environmental persistence of this pathogen, comparative genomics and phenotypic assays were applied to assess adhesion capability, motility, and biofilm formation in .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110.
Gram-negative bacteria produce chaperone-usher pathway pili, which are extracellular protein fibers tipped with an adhesive protein that binds to a receptor with stereochemical specificity to determine host and tissue tropism. The outer-membrane usher protein, together with a periplasmic chaperone, assembles thousands of pilin subunits into a highly ordered pilus fiber. The tip adhesin in complex with its cognate chaperone activates the usher to allow extrusion across the outer membrane.
View Article and Find Full Text PDFAnnu Rev Microbiol
November 2024
Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!