We have studied male sexual differentiation of null mutant mice (-/-) for the thyroid-specific enhancer-binding protein (T/ebp or Nkx2.1) gene, a homeodomain transcription factor that plays a role in organogenesis of the thyroid, lung, ventral forebrain, and pituitary gland. Because the T/ebp/Nkx2.1 (-/-) mice do not develop the pituitary gland, their sexual differentiation, if any, must occur in the absence of action of gonadotropins and other pituitary hormones. The (-/-) mice survive only until birth (embryonic d 19-19.5 of pregnancy), and when their external and internal genitals were inspected at embryonic d 18.5, they were indistinguishable from the (+/-) and (+/+) control mice. The testis weights of (-/-) mice were 20% lower than in (+/+) and (+/-) mice. The testosterone content of the (-/-) testes (13.5 +/- 2.4 pg/gonad, mean +/- SEM, n = 11) was dramatically reduced, compared with (+/-) (165 +/- 22.5 pg, n = 14) and (+/+) (234 +/- 37.3 pg, n = 10) littermates. Light microscopy revealed no difference in seminiferous tubules, interstitial tissue, or relative proportions of the two-cell compartments between the (-/-) and (+/+) testes. However, electron microscopy confirmed that Leydig cells in the (-/-) testes were much smaller, with smaller mitochondria and proportion of smooth endoplasmic reticulum than found in the controls, which was in support of the low androgen content of the knockout testes. In conclusion, this study on T/ebp/Nkx2.1 knockout mice, devoid of the pituitary gland, demonstrates that pituitary hormone secretion is not needed for stimulation of sufficient fetal testicular androgen synthesis to induce male sexual differentiation. The endogenous testosterone level in the null mutant testes is 5-10% of the control level, which suggests that there is a considerable safety margin in the amount of testosterone that is needed for the male fetal masculinization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2002-220052 | DOI Listing |
Diabetol Int
January 2025
Clinical Research Department, Institute of Biomedical Research and Innovation (IBRI), Foundation for Biomedical Research and Innovation at Kobe (FBRI), 6-3-7 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047 Japan.
The prevalence of diabetes has increased rapidly in recent years, and many types of therapeutic agents have been developed. However, the main purpose of these drugs is to lower blood glucose levels, and they are not fundamental solutions. In contrast, our research has been aimed at stimulating and inducing β-cell proliferation in vivo and replenishing β-cells.
View Article and Find Full Text PDFBMC Biol
January 2025
Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
Background: Silver arowana (Osteoglossum bicirrhosum) is a basal fish species with sexual monomorphism, while its sex determination mechanism has been poorly understood, posing a significant challenge to its captive breeding efforts.
Results: We constructed two high-quality chromosome-level genome assemblies for both female and male silver arowana, with scaffold N50 values over 10 Mb. Combining re-sequencing data of 109 individuals, we identified a female-specific region, which was localized in a non-coding region, i.
BMC Genomics
January 2025
Cannabis Innovation and Research Center, Université de Moncton, Moncton, New-Brunswick, Canada.
Background: Due to its previously illicit nature, Cannabis sativa had not fully reaped the benefits of recent innovations in genomics and plant sciences. However, Canada's legalization of C. sativa and products derived from its flower in 2018 triggered significant new demand for robust genotyping tools to assist breeders in meeting consumer demands.
View Article and Find Full Text PDFCommun Biol
January 2025
Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France.
The H3K79 methyltransferase DOT1L is essential for multiple aspects of mammalian development where it has been shown to regulate gene expression. Here, by producing and integrating epigenomic and spike-in RNA-seq data, we decipher the molecular role of DOT1L during mouse spermatogenesis and show that it has opposite effects on gene expression depending on chromatin environment. On one hand, DOT1L represses autosomal genes that are devoid of H3K79me2 at their bodies and located in H3K27me3-rich/H3K27ac-poor environments.
View Article and Find Full Text PDFSteroids
January 2025
Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China. Electronic address:
Background: 17α-Hydroxylase/17,20-lyase deficiency (17OHD) is a rare form of congenital adrenal hyperplasia (CAH), caused by mutations in the CYP17A1 gene. It typically manifests clinically as variable degree of hypertension, hypokalemia, and disorders of sexual development (DSD), which can include abnormal sexual differentiation in males and sexual infantilism in females. Over 100 mutations in CYP17A1 have been identified, with most cases involving missense mutations or small deletions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!