Magnocellular neurons (MCNs) in the hypothalamo-neurohypophysial system synthesize high levels of the peptides oxytocin (OT) and vasopressin (VP) in separate cells. We used RT-PCR amplification of the RNA from single-cells dissected from supraoptic nuclei of lactating rats to produce cDNAs from identified OT or VP MCNs, which were used to construct OT- and VP-MCN-specific cDNA libraries. These cDNA libraries were then screened using labeled probes from the OT- and VP-cells' amplified cDNAs. Differentially hybridized colonies were isolated and characterized by slot blot hybridization, Southern blot hybridization, DNA sequencing, and in situ hybridization histochemistry. Using this approach, several novel cell-specific mRNAs were identified in the MCNs. One cell-specific clone, phosphofructokinase-C, was isolated from the OT-cell library, and five cell-specific clones were isolated from the VP-cell library. These were identified as paternally expressed gene (Peg)5/neuronatin, metallothionein III, Peg3, synaptotagmin V, and a 3'-phosphoadenosine 5'-phosphosulfate synthase 2-related mRNA. None of these genes would have been predicted to be differentially expressed in OT and VP MCNs, based on our current knowledge; and hence, this single cell differential gene expression approach has begun to further define the MCN phenotypes by identifying selectively expressed molecules in them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2002-220516 | DOI Listing |
Horm Behav
January 2025
School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK. Electronic address:
Within dominance hierarchies, individuals must interact in a rank-appropriate manner, thus behavior and its underlying neural mechanisms must change with social status. One such potential neural mechanism is arginine vasotocin (AVT), a nonapeptide which has been implicated in the regulation of dominance and aggression across vertebrate taxa. We investigated the relationship between social status, dominance-related behaviors, and vasotocin neuron counts in daffodil cichlids (Neolamprologus pulcher).
View Article and Find Full Text PDFCurr Res Neurobiol
June 2025
Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia.
Lesions of the primary visual cortex (V1) cause retrograde neuronal degeneration, volume loss and neurochemical changes in the lateral geniculate nucleus (LGN). Here we characterised the timeline of these processes in adult marmoset monkeys, after various recovery times following unilateral V1 lesions. Observations in NeuN-stained sections obtained from animals with short recovery times (2, 3 or 14 days) showed that the volume and neuronal density in the LGN ipsilateral to the lesions were similar to those in the contralateral hemispheres.
View Article and Find Full Text PDFbioRxiv
December 2024
Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
Vasopressin (AVP), a nonapeptide synthesized predominantly by magnocellular hypothalamic neurons, is conveyed to the posterior pituitary the pituitary stalk, where AVP is secreted into the circulation. Known to regulate blood pressure and water homeostasis, it also modulates diverse social behaviors, such as pair-bonding, social recognition and cognition in mammals including humans. Importantly, AVP modulates social behaviors in a gender-specific manner, perhaps, due to gender differences in the distribution in the brain of AVP and its main receptor AVPR1a.
View Article and Find Full Text PDFCNS Neurosci Ther
December 2024
The Postgraduate Training Base of Jinzhou Medical University and Department of Anesthesiology, The PLA Rocket Force Characteristic Medical Center, Beijing, China.
Aims: This study investigated the roles of lateral basal forebrain glial cell line-derived neurotrophic factor (GDNF) signaling and cholinergic neuron activity, apoptosis, and autophagy dysfunction in sleep deprivation-induced increased risk of chronic postsurgical pain (CPSP) in mice.
Methods: Sleep deprivation (6 h per day from -1 to 3 days postoperatively) was administered to mice receiving skin/muscle incision and retraction (SMIR) to determine whether perioperative sleep deprivation induces mechanical and thermal pain hypersensitivity, increases the risk of chronic pain, and causes changes of basal forebrain neurons activity (c-Fos immunostaining), apoptosis (cleaved Caspase-3 expression), autophagy (LC3 and p62 expression) and GDNF expression. Adeno-associated virus (AAV)-GDNF was microinjected into the basal forebrain to see whether increased GDNF expression could reverse sleep deprivation-induced changes in pain duration and cholinergic neuron apoptosis and autophagy.
Exp Eye Res
January 2025
Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200032, China. Electronic address:
Normal perception of visual information relies not only on the quantity and quality of retinal ganglion cells (RGCs), but also on the integrity of the visual pathway, within which RGC central projection predominates. However, the exact changes of RGC central projection under particular pathological conditions remain to be elucidated. Here, we report a whole-brain clearing method modified from iDISCO for 3D visualization of RGC central projection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!