Externalization of annexin I from a folliculo-stellate-like cell line.

Endocrinology

Department of Human Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom.

Published: November 2002

Our recent studies on rat pituitary tissue suggest that the annexin I-dependent inhibitory actions of glucocorticoids may not be exerted directly on endocrine cells but indirectly via folliculo-stellate (FS) cells. FS cells contain glucocorticoid receptors and abundant annexin I. We have studied the localization of annexin I in FS cells and the ability of dexamethasone to induce annexin I secretion by an FS (TtT/GF) cell line, using Western blotting and immunofluorescence microscopy. Exposure of TtT/GF cells to dexamethasone (0.1 micro M, 3 h) caused an increase in the amount of annexin I protein in the intracellular compartment and attached to the surface of the cells. In nonpermeabilized cells, immunofluorescence labeling revealed that annexin I immunoreactivity was associated with the cell surface and concentrated in focal patches on the ends of cytoplasmic processes; dexamethasone (0.1 micro M, 3 h) increased both the number and intensity of these foci. Immunogold electron microscopy confirmed in anterior pituitary tissue the presence of immunoreactive-annexin at the surface of FS cell processes contacting endocrine cells. These data support our hypothesis that annexin I is released by FS cells in response to glucocorticoids to mediate glucocorticoid inhibitory actions on pituitary hormone release via a juxtacrine mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2002-220529DOI Listing

Publication Analysis

Top Keywords

cells
9
pituitary tissue
8
inhibitory actions
8
endocrine cells
8
dexamethasone micro
8
annexin
7
externalization annexin
4
annexin folliculo-stellate-like
4
cell
4
folliculo-stellate-like cell
4

Similar Publications

Understanding the Importance of the Small Artery Media-Lumen Ratio: Past and Present.

Basic Clin Pharmacol Toxicol

February 2025

Department of Biomedicine, Aarhus University, Aarhus, Denmark.

The media-lumen diameter ratio of small arteries is increased in hypertension, diabetes and obesity. It is likely that both shear stress on the endothelial cells, transmural pressure and smooth muscle cell tone are important for the altered vascular structure. However, the precise interaction and importance of these factors are incompletely understood.

View Article and Find Full Text PDF

Impact of hyper- and hypothermia on cellular and whole-body physiology.

J Intensive Care

January 2025

Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA.

The incidence of heat-related illnesses and heatstroke continues to rise amidst global warming. Hyperthermia triggers inflammation, coagulation, and progressive multiorgan dysfunction, and, at levels above 40 °C, can even lead to cell death. Blood cells, particularly granulocytes and platelets, are highly sensitive to heat, which promotes proinflammatory and procoagulant changes.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.

View Article and Find Full Text PDF

Pancreatic cancer is a lethal disease with an insidious onset, and little is known about its early molecular events. Here, we found that the sterol regulatory element-binding protein 1 (SREBP1) expression is gradually upregulated during the initiation of pancreatic cancer. Through in vitro 3D culture of pancreatic acinar cells and experiments in LSL-Kras;Pdx1-Cre (KC) mice, we found that pharmacological inhibition of SREBP1 suppressed pancreatic tumorigenesis.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!