Transient increase of P-glycoprotein expression in endothelium and parenchyma of limbic brain regions in the kainate model of temporal lobe epilepsy.

Epilepsy Res

Department of Pharmacology, Toxicology and Pharmacy, School of Veterinary Medicine, Bünteweg 17, Building 218, D-30559 Hannover, Germany.

Published: October 2002

Several recent studies have shown that the multidrug transporter P-glycoprotein (PGP) is over-expressed in endothelial cells from brain blood vessels of patients with refractory temporal lobe epilepsy (TLE), suggesting that altered drug permeability across the blood-brain barrier (BBB) may be involved in pharmacoresistance to antiepileptic drugs (AEDs). Furthermore, over-expression of PGP has been found in astrocytes of epileptogenic tissue. However, it is not known in which regions of the temporal lobe PGP over-expression occurs and whether the over-expression is a result of uncontrolled seizures, of the mechanisms underlying epilepsy, or of chronic administration of AEDs. In the present study, we used the rat kainate model of TLE to study the time-course of PGP expression in capillary endothelium and parenchyma of the hippocampus and several other limbic brain regions thought to be involved in TLE. Kainate was administered at a dose which produced a generalized convulsive status epilepticus (SE), which was limited to a duration of 90 min by diazepam. PGP was detected by immunohistochemistry either 24 h or 10 days after SE, using a monoclonal PGP antibody. In both kainate-treated rats and controls, PGP staining was observed mainly in microvessel endothelial cells and, to a much lesser extent, in parenchymal cells. Twenty-four hours after SE, significant increases in PGP expression were determined in endothelial cells of the dentate gyrus and in parenchymal cells of the CA1 and CA3 sectors of the hippocampus. Furthermore, increased PGP expression was observed in the amygdala, piriform, and parietal cortex, but not in the substantia nigra. Ten days after the kainate-induced SE, except for an increase in parenchymal PGP expression in the dentate hilus and CA1 sector, no significant differences to controls were determined, indicating that most PGP increases seen 24 h after SE were only transient. The data indicate that PGP over-expression is a transient result of seizures and occurs in several regions of the temporal lobe. Seizure-induced over-expression of PGP in capillary endothelial cells of the BBB is likely to reduce the penetration of AEDs into brain parenchyma, which could explain the drug-refractoriness of seizures in TLE.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0920-1211(02)00156-0DOI Listing

Publication Analysis

Top Keywords

temporal lobe
16
endothelial cells
16
pgp expression
16
pgp
13
endothelium parenchyma
8
limbic brain
8
brain regions
8
kainate model
8
lobe epilepsy
8
over-expression pgp
8

Similar Publications

Background: Temporal lobe epilepsy (TLE) is the most common form of drug-resistant epilepsy, often associated with hippocampal sclerosis (HS), which involves selective neuronal loss in the Cornu Ammonis subregion 1 CA1 and CA4 regions of the hippocampus. Granule cells show migration and mossy fiber sprouting, though the mechanisms remain unclear. Microglia play a role in neurogenesis and synaptic modulation, suggesting they may contribute to epilepsy.

View Article and Find Full Text PDF

The piriform cortex (PC) plays a pivotal role in the onset and propagation of temporal lobe epilepsy (TLE), making it a potential target for therapeutic interventions. This review delves into the anatomy and epileptogenic connections of the PC, highlighting its significance in seizure initiation and resistance to pharmacological treatments. Despite its importance, the PC remains underexplored in surgical approaches for TLE.

View Article and Find Full Text PDF

Creativity and the production of artwork can have an impact on the course and treatment of comorbid severe mental illness and neurodegeneration. We report on a 70-year-old male patient with highly original artistic behavior, who suffered from lifelong recurrent major depression and subsequently developed symptoms of progressive bulbar palsy (PBP). In the context of a systematic literature review, we detail the patient's personal and artistic biographies and portray artwork from his artistic portfolio together with his disease history, clinical examination, psychopathological and neuropsychological evaluations, blood and cerebrospinal fluid analyses, neuroimaging, neurophysiological testing, and psychotherapeutic treatment.

View Article and Find Full Text PDF

Parenting: How caregiving experience refines sensory integration.

Curr Biol

January 2025

Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Electronic address:

Pup odors and vocalizations integrate in the auditory cortex. A new study reveals that odor information is relayed to the auditory cortex by the basal amygdala and the activity of this projection enhances sound responses in females with pup experience.

View Article and Find Full Text PDF

The present study examines whether structural and functional variability in medial temporal lobe (MTL) neocortical regions correlate with individual differences in episodic memory and longitudinal memory change in cognitively healthy older adults. To address this question, older adults were administered a battery of neuropsychological tests on three occasions: the second occasion one month after the first test session, and a third session three years later. Structural and functional MRI data were acquired between the first two sessions and included an in-scanner associative recognition procedure enabling estimation of MTL encoding and recollection fMRI BOLD effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!