Crude oils produced in the North West shelf of Western Australia are highly volatile, a characteristic not shared by most of the Northern Hemisphere crude oils on which internationally accepted toxicity test protocols were developed. Because of this volatility and some other factors, the LC50 and EC50 values obtained from acute toxicity tests will be significantly affected by the changes of toxicant concentration in test solutions during the period of exposure. To address these issues all steps of a standard protocol for crude oil toxicity testing have been revised. A systematic study has been performed on factors which affect petroleum hydrocarbon solubilisation in aqueous systems during test solution preparations. The influence of mixing time, agitation energy and volume/ interface ratio on a hydrocarbon concentration in a water-soluble fraction (WSF) was studied for heavy, medium and light crude oils. A study of the sensitivity of marine unicellular algae to WSF of crude oils was conducted with Isochrysis sp., Nannochloropsis-like sp. and Nitzchia closterium. Total concentrations of hydrocarbons dissolved in test solutions were estimated by UV-spectrometry and GC/FID chemical analyses. When the toxicant concentration decreased during the exposure period, the EC50 values derived from initial or final concentrations either underestimate or overestimate toxicity, respectively. Therefore, weighted average concentrations (WAC) calculated for the whole test period were recommended for expressing hydrocarbon concentrations in test solutions of crude oils. Toxicity indices calculated from WAC of total hydrocarbons for different crude oils can be compared regardless of the rates of hydrocarbon loss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0025-326x(02)00124-8 | DOI Listing |
Sci Rep
January 2025
Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.
View Article and Find Full Text PDFSci Rep
January 2025
Civil and Environmental Engineering Department, Khalifa University, Abu Dhabi, UAE.
Estimating spatiotemporal maps of greenhouse gases (GHGs) is important for understanding climate change and developing mitigation strategies. However, current methods face challenges, including the coarse resolution of numerical models, and gaps in satellite data, making it essential to improve the spatiotemporal estimation of GHGs. This study aims to develop an advanced technique to produce high-fidelity (1 km) maps of CO and CH over the Arabian Peninsula, a highly vulnerable region to climate change.
View Article and Find Full Text PDFSci Rep
January 2025
Hydrobiology Lab, Water Pollution Research Department, National Research Centre, Dokki, Giza, 12622, Egypt.
Carbon black (CB) as rubber reinforcement has raised environmental concerns regarding this traditional petroleum-based filler, which is less susceptible to biodegradability. Although it has great reinforcing properties, the production technique is no longer sustainable, and its cost increases regularly. For these reasons, it is wise to look for sustainable replacement materials.
View Article and Find Full Text PDFBMC Chem
January 2025
Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Cairo, 11727, Egypt.
The depletion of fossil fuels and growing environmental concerns necessitate the exploration of renewable energy sources. Biodiesel, a promising alternative fuel derived from sustainable feedstock, has attracted considerable attention. This study investigates the catalytic esterification of oleic acid, a readily available fatty acid, with ethanol for biodiesel production using a novel heterogeneous catalyst, ZrO/AlO.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical Engineering, School of Engineering and Digital Science, Nazarbayev University, Astana 010000, Kazakhstan.
The escalating global energy demand necessitates enhanced oil recovery methods, particularly offshore. Biological nanotechnology offers sustainable, environment-friendly, and cost-effective alternatives to synthetic chemicals. This study explored the synthesis of polysaccharide-based nanoparticles (PNPs) from Corchorus olitorius leaves using a weak acid-assisted ultrasonic method and their application as nanocomposites for oil recovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!