AI Article Synopsis

Article Abstract

A cyclic complex [Ni(12)(chp)(12)(O(2)CMe)(12)(thf)(6)(H(2)O)(6)] (1) has been synthesised and studied (chp=6-chloro-2-pyridonate). Complex 1 exhibits ferromagnetic exchange between the S=1 centres, giving an S=12 spin ground state. Detailed studies demonstrate that it is a single-molecule magnet with an energy barrier of approximately 10 K for reorientation of magnetisation. Resonant quantum tunnelling is also observed. The field between resonances allows accurate measurement of D, which is 0.067 K. Inelastic neutron scattering studies have allowed exchange parameters to be derived accurately, which was impossible from susceptibility data alone. Three exchange interactions are required: two ferromagnetic nearest neighbour interactions of approximately 11 and 2 cm(-1) and an anti-ferromagnetic next nearest neighbour interaction of -0.9 cm(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1002/1521-3765(20021104)8:21<4867::AID-CHEM4867>3.0.CO;2-RDOI Listing

Publication Analysis

Top Keywords

single-molecule magnet
8
nearest neighbour
8
studies nickel-based
4
nickel-based single-molecule
4
magnet cyclic
4
cyclic complex
4
complex [ni12chp12o2cme12thf6h2o6]
4
[ni12chp12o2cme12thf6h2o6] synthesised
4
synthesised studied
4
studied chp=6-chloro-2-pyridonate
4

Similar Publications

Ubiquitin-A structural perspective.

Mol Cell

January 2025

Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia. Electronic address:

The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques.

View Article and Find Full Text PDF

The synthesis and structural characterisation of [Ln(Tp)]I (1-Ln; Ln = La, Ce, Pr, Nd) (Tp = hydrotris(3-(2'-furyl)-pyrazol-1-yl)borate) have been reported as an isomorphous series adopting pseudo-icosahedral ligand field geometries. Continuous shape measurement (CShM) analyses on the crystal field environments of 1-Ln show the smallest values yet reported for complexes employing two hexadentate ligands (-scorpionate environments), with the smallest belonging to 1-La. Single-ion magnetism for 1-Ce, 1-Pr and 1-Nd was probed with ac magnetic susceptibility studies revealing slow magnetic relaxation for 1-Nd in applied magnetic fields and in zero-applied field for 1-Ce, which is a rare observation for Ce(III)-based single-ion magnets.

View Article and Find Full Text PDF

A variety of potential biological roles of mechanical forces have been proposed in the field of cell biology. In particular, mechanical forces alter the mechanical conditions within cells and their environment, exerting a strong effect on the reorganization of the actin cytoskeleton. Single-molecule imaging studies have provided evidence that an actin filament may act as a mechanosensor.

View Article and Find Full Text PDF

Background: BDNF has increasingly gained attention as a key molecule controlling remyelination with a prominent role in neuroplasticity and neuroprotection. Still, it remains unclear how BDNF relates to clinicoradiological characteristics particularly at the early stage of the disease where precise prognosis for the further MS course is crucial.

Methods: BDNF, NfL and GFAP concentrations in serum and CSF were assessed in 106 treatment naïve patients with MS (pwMS) as well as 73 patients with other inflammatory/non-inflammatory neurological or somatoform disorders using a single molecule array HD-1 analyser.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!