A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Crucial role of fibroblasts in regulating epidermal morphogenesis. | LitMetric

Crucial role of fibroblasts in regulating epidermal morphogenesis.

Cell Tissue Res

Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands.

Published: November 2002

AI Article Synopsis

  • The study explores whether fibroblasts can provide the growth factors necessary for creating a fully developed epidermis when grown on a de-epidermized dermis (DED).
  • When fibroblasts are absent, the resulting epidermis has limited viable cell layers and a thin stratum corneum; however, their presence boosts keratinocyte proliferation and enhances epidermal structure.
  • The findings suggest that while fibroblasts initially stimulate cell growth, their influence decreases over time, and effective epidermal differentiation can only be achieved with specific growth factors like keratinocyte growth factor.

Article Abstract

Epidermis reconstructed on de-epidermized dermis (DED) was used to investigate whether fibroblasts can substitute growth factors needed for generation of a fully differentiated epidermis. For this purpose, a centrifugal seeding method was developed to reproducibly incorporate different fibroblast numbers into DED. Using (immuno)histochemical techniques, we could demonstrate that in the absence of fibroblasts the formed epidermis consisted only of two to three viable cell layers with a very thin stratum corneum layer. However, in the presence of fibroblasts keratinocyte proliferation and migration was stimulated and epidermal morphology markedly improved. The stimulatory effect of fibroblasts showed a biphasic character: keratinocyte proliferation increased in the initial phase but decreased in later stages of cell culture. After 3 weeks culture at the air-liquid interface, the proliferation index decreased irrespective of the number of fibroblasts present within the dermal matrix to levels observed also in native epidermis. Keratin 10 was localized in all viable suprabasal cell layers irrespective of the absence or presence of fibroblasts. Keratin 6 was downregulated with increasing numbers of fibroblasts, and keratins 16 and 17 were absent in fibroblast-populated matrices. The expression of involucrin or transglutaminase 1 showed a similar pattern as for the keratins. Irrespective of the number of fibroblasts incorporated into DED, the expression of alpha(3), alpha(6), beta(1), and beta(4) integrin subunits was upregulated. In fibroblast-free DED matrices normalization of epidermal differentiation was only achieved when the culture medium was supplemented by keratinocyte growth factor. The results of this study indicate that normalization of epidermal differentiation can be achieved using a non-contractile dermal matrix populated with fibroblasts.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-002-0621-0DOI Listing

Publication Analysis

Top Keywords

fibroblasts
10
cell layers
8
presence fibroblasts
8
keratinocyte proliferation
8
irrespective number
8
number fibroblasts
8
dermal matrix
8
normalization epidermal
8
epidermal differentiation
8
differentiation achieved
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!