Tensile bond strength of acrylic resin denture teeth to a microwave- or heat-processed denture base.

J Prosthet Dent

Department of Prosthodontics, College of Dentistry, University of Iowa, Iowa City, Iowa 52242-1001, USA.

Published: August 2002

Statement Of Problem: Fracture of acrylic resin prosthetic teeth from acrylic resin denture bases can be a problem for some patients. The optimal combination of acrylic resin denture tooth, denture base material, and processing method is not known. Purpose. The objective of this study was to compare the tensile bond strengths of heat- and microwave-polymerized acrylic resins among 4 types of acrylic resin denture teeth.

Material And Methods: Heat-polymerized (Lucitone 199) and microwave-polymerized (Acron MC) acrylic resins were used. Four types of acrylic resin denture teeth (IPN, SLM, Vitapan, and SR-Orthotyp-PE) were milled to a fixed diameter according to ADA specification no. 15. Ten specimens of each tooth type were processed to each of the denture base materials according to the manufacturers' instructions. Ten additional resin control specimens without teeth also were fabricated. Specimens were thermocycled and tested for strength until fracture with a custom alignment device. Data were analyzed with analysis of variance and Duncan's multiple range test. A scanning electron microscope was used to identify adhesive and cohesive failures within debonded specimens.

Results: The mean force required to fracture the specimens ranged from 5.3 +/- 3.01 to 21.6 +/- 5.2 MPa for the microwave-polymerized base and 11.2 +/- 3.0 to 39.1 +/- 5.1 MPa for the heat-polymerized base. The most common failure was cohesive within the denture tooth. With each base material, Orthotyp and IPN teeth exhibited the highest bond strengths; SLM and Orthotyp bond strengths were similar. In general, heat-polymerized groups failed cohesively within the denture base resin or the tooth, and microwave-polymerized groups failed adhesively at either the ridge lap or occlusal surface of the denture tooth.

Conclusion: Within the limitations of this study, the results suggest that the type of denture base material and denture tooth selected for use may influence the tensile bond strength of the tooth to the base. Selection of more compatible combinations of base and resin teeth may reduce the number of prosthesis fractures and resultant repairs.

Download full-text PDF

Source
http://dx.doi.org/10.1067/mpr.2002.127898DOI Listing

Publication Analysis

Top Keywords

acrylic resin
24
resin denture
20
denture base
20
denture
13
tensile bond
12
denture tooth
12
base material
12
bond strengths
12
base
10
resin
9

Similar Publications

Background: Antiseptic solutions are commonly utilized during total joint arthroplasty (TJA) to prevent and treat periprosthetic joint infection (PJI). The purpose of this study was to investigate which antiseptic solution is most effective against methicillin-sensitive Staphylococcus aureus (MSSA) and Escherichia coli biofilms established in vitro on orthopaedic surfaces commonly utilized in total knee arthroplasty: cobalt-chromium (CC), oxidized zirconium (OxZr), and polymethylmethacrylate (PMMA).

Methods: MSSA and E.

View Article and Find Full Text PDF

Osteoporotic vertebral compression fractures (OVCFs) can be painful. Percutaneous kyphoplasty (PKP) aims at strengthening the vertebra and reducing pain, but efficacy can vary among patients. The purpose of this study was to establish a risk prediction model for pain relief following PKP in patients with OVCF.

View Article and Find Full Text PDF

Objective: To evaluate the influence of different cleaning methods, surface treatments, and aging on the repair bond strength to a CAD/CAM glass-ceramic.

Materials And Methods: Forty-eight lithium disilicate CAD/CAM ceramic blocks were fabricated, sintered, and embedded in acrylic resin. After contamination with human saliva, they were divided according to the factors "Cleaning method" (Control-water/air spray, Air-particle abrasion with AlO, Ivoclean cleaning paste), "Surface treatment" (5% Hydrofluoric acid-HF + Silane, Monobond Etch & Prime-MEP), and "Aging" (thermocycling, no thermocycling).

View Article and Find Full Text PDF

The growing pursuit of carbon circularity in material fabrication has led to the increased use of recycled and biobased resources, especially in epoxy resin systems. Fossil-based bisphenols are being replaced with recycled bisphenol A (r-BPA) and lignin derivatives, both derived from previous processes. In this study, r-BPA was chemically recycled from end-of-life televisions, then converted into r-DGEBA and r-DAGBA through glycidylation and acrylic acid ring-opening.

View Article and Find Full Text PDF

Carbon dot embedded hybrid microgel from synthesis to sensing: Experimental and theoretical approach.

Anal Chim Acta

February 2025

Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India; Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Simhat, Haringhata, West Bengal, 741249, India. Electronic address:

Background: The intellectual progress in fabricating artificial probes for selective appraisal of biologically admissible amino acids has displayed exponential growth in recent era.The neoteric era in material science has witnessed the significant application of carbon quantum dots (CQDs). However, the hybrid microgel of CQDs was less explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!