Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Human epidermal keratinocytes are an important target for gene therapy because they can be easily expanded in culture and used to generate skin substitutes for the treatment of wounds, genetic diseases of the skin, and for delivery of proteins to the systemic circulation. Although retroviral transduction results in permanent genetic modification, differentiation and loss of transduced cells from the epidermis results in temporary transgene expression. To ensure permanent genetic modification, epidermal stem cells must be transduced with high efficiency. We evaluated gene transfer on two different substrates and found that the efficiency of gene transfer is substantially higher on a substrate of recombinant fibronectin (FN), when compared to tissue culture plastic (TCP). The rate of retroviral transduction on FN is four times faster than transduction on tissue culture plates and is independent of polybrene (PB). The transduction efficiency correlates with the levels of expression of integrin subunits alpha5, alpha2, and beta1, which have been shown to correlate with stem cell phenotype. Notably, cells that adhere rapidly to FN are transduced more efficiently than slowly adherent cells. In addition, integrin-blocking antibodies decrease the efficiency of gene transfer in a dose-dependent manner. Our results suggest that FN may enhance retroviral gene transfer to the least differentiated cells, thereby increasing the potential of genetically modified keratinocytes to treat short- and long-term disease states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/104303402760372927 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!