AI Article Synopsis

  • NASA is planning to send humans to Mars and the moon for exploration and is testing instruments using volcanic ash that mimics lunar and Martian soil.
  • The study involved administering different doses of lunar and Martian soil simulants to mice to assess potential health risks, particularly focusing on lung responses over time.
  • Results indicate varying levels of inflammation and fibrosis in mouse lungs, with more severe effects seen in Martian soil simulant and when ozone was present during exposure.

Article Abstract

NASA is contemplating sending humans to Mars and to the moon for further exploration. Volcanic ashes from Arizona and Hawaii with mineral properties similar to those of lunar and Martian soils, respectively, are used to simulate lunar and Martian environments for instrument testing. Martian soil is highly oxidative; this property is not found in Earth's volcanic ashes. NASA is concerned about the health risk from potential exposure of workers in the test facilities. Fine lunar soil simulant (LSS), Martian soil simulant (MSS), titanium dioxide, or quartz in saline was intratracheally instilled into groups of 4 mice (C57BL/6J) at 0.1 mg/mouse (low dose, LD) or 1 mg/mouse (high dose, HD). Separate groups of mice were exposed to ozone (0.5 ppm for 3 h) prior to MSS instillation. Lungs were harvested for histopathological examination 7 or 90 days after the single dust treatment. The lungs of the LSS-LD groups showed no evidence of inflammation, edema, or fibrosis; clumps of particles and an increased number of macrophages were visible after 7 days but not 90 days. In the LSS-HD-7d group, the lungs showed mild to moderate alveolitis, and perivascular and peribronchiolar inflammation. The LSS-HD-90d group showed signs of mild chronic pulmonary inflammation, septal thickening, and some fibrosis. Foci of particle-laden macrophages (PLMs) were still visible. Lung lesions in the MSS-LD-7d group were similar to those observed in the LSS-HD-7d group. The MSS-LD-90d group had PLMs and scattered foci of mild fibrosis in the lungs. The MSS-HD-7d group showed large foci of PLMs, intra-alveolar debris, mild-to-moderate focal alveolitis, and perivascular and peribronchiolar inflammation. The MSS-HD-90d group showed focal chronic mild-to-moderate alveolitis and fibrosis. The findings in the O(3)-MSS-HD-90d group included widespread intra-alveolar debris, focal moderate alveolitis, and fibrosis. Lung lesions in the MSS groups were more severe with the ozone pretreatment. The effects of O(3) and MSS coexposure appeared to be more than additive. Results for the TiO(2) and quartz controls were consistent with the known pulmonary toxicity of these compounds. The overall severity of lung injury was TiO(2) < LSS < MSS < O(3) + MSS < quartz. Except for TiO(2), the increased duration of dust presence in the lung from 7 to 90 days transformed the acute inflammatory response to a chronic inflammatory lesion. This study showed that LSS and MSS are more hazardous in the lungs than nuisance dusts.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08958370290084683DOI Listing

Publication Analysis

Top Keywords

lunar martian
12
pulmonary toxicity
8
volcanic ashes
8
martian soil
8
soil simulant
8
groups mice
8
group
8
lss-hd-7d group
8
moderate alveolitis
8
alveolitis perivascular
8

Similar Publications

May Antarctic plants grow on Martian and Lunar soil simulants under terrestrial conditions?

An Acad Bras Cienc

December 2024

Universidade do Estado do Rio de Janeiro, Departamento de Biofísica e Biometria, Núcleo de Genética Molecular Ambiental e Astrobiologia, Rua São Francisco Xavier, 524, Pavilhão Reitor Haroldo Lisboa da Cunha, Subsolo, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil.

Extremophile organisms have been largely studied in Astrobiology. Among them, two antarctic plants emerge as good candidates to become colonizers of other celestial bodies, such as Mars and the Moon. The present research aimed to evaluate survival and growing capacity of Sanionia uncinata and Colobanthus quitensis on Martian (MGS-1) and Lunar (LMS-1) regolith simulants, under terrestrial conditions.

View Article and Find Full Text PDF

The possible presence of brines on Mars adds an intriguing dimension to the exploration of Martian environments. Their potential involvement in the formation of recurring slope lineae has sparked debates on the existence of liquid water versus alternative dry processes. In situ instrumentation on rovers and landers has been instrumental in providing valuable data for comprehending the dynamics of brines.

View Article and Find Full Text PDF

Hydroponics for plant cultivation in space - a white paper.

Life Sci Space Res (Amst)

November 2024

Biology Department, University of Louisiana at Lafayette, Lafayette, LA 70503, USA.

The microgravity conditions experienced in space prevent the proper distribution of water throughout root modules of plant growth hardware, and the lack of convective mixing and buoyancy reduces gas exchange. To overcome this problem, cultivation technologies should be designed that take advantage of the unique traits of the spaceflight environment instead of attempting to recreate Earth-like conditions. Such technologies should be adaptable to both the microgravity of spaceflight and the low gravity environments of the lunar and Martian surface.

View Article and Find Full Text PDF

We present the proposed strategic study, 'Integrated elements for Martian life signature exploration', to support the sampling and identification of any potential biosignatures in compliance with the engineering constraints of the Tianwen-3 mission.

View Article and Find Full Text PDF

Bioregenerative food systems that routinely produce fresh, safe-to-eat crops onboard spacecraft can supplement the nutrition and variety of shelf-stable spaceflight food systems for use during future exploration missions (i.e., low earth orbit, Mars transit, lunar, and Martian habitats).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!