Tunable green laser source based on frequency mixing of pump and laser radiation from a Nd:YVO4 crystal operating at 1342 nm with an intracavity KTP crystal.

Appl Opt

Departamento de Física de Materiales C-IV, Facultad de Ciencias, Universidad Autónoma de Madrid , Spain.

Published: October 2002

We report on cw tunable green laser light generation from a Nd:YVO4 laser operating at 1342 nm. Visible radiation was produced by a frequency mixing of pump and laser radiation inside an intracavity KTP crystal. When Nd:YVO4 was diode pumped, green laser was tunable from 503 to 505 nm. The green tuning range increases up to 22 nm when a Ti:sapphire laser is used as the pump source. In nonoptimal conditions, and for a pump power of 650 mW, green power was above 3 mW and close to 0.1 mW for Ti:sapphire and diode pumping, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.41.006394DOI Listing

Publication Analysis

Top Keywords

green laser
12
tunable green
8
frequency mixing
8
mixing pump
8
pump laser
8
laser radiation
8
operating 1342
8
intracavity ktp
8
ktp crystal
8
laser
7

Similar Publications

The distribution of self-awareness across species is important to understand, not only as a matter of scientific interest but also because of its implications for the ethical standing of non-human animals. The prevailing methodology for determining self-awareness is to test for visual self-recognition using mirror-image stimulation and a 'mark test'. However, most studies have involved very small sample sizes, omitted a control condition and been conducted on captive animals.

View Article and Find Full Text PDF

Low-threshold anisotropic polychromatic emission from monodisperse quantum dots.

Natl Sci Rev

February 2025

Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

Colloidal quantum dots (QDs) are solution-processable semiconductor nanocrystals with favorable optoelectronic characteristics, one of which is their multi-excitonic behavior that enables broadband polychromatic light generation and amplification from monodisperse QDs. However, the practicality of this has been limited by the difficulty in achieving spatial separation and patterning of different colors as well as the high pumping intensity required to excite the multi-excitonic states. Here, we have addressed these issues by integrating monodisperse QDs in multi-excitonic states into a specially designed cavity, in which the QDs exhibit an anisotropic polychromatic emission (APE) characteristic that allows for tuning the emission from green to red by shifting the observation direction from perpendicular to lateral.

View Article and Find Full Text PDF

Effect of photobiological regulation of green laser on orthodontic tooth retention in rats.

Lasers Med Sci

January 2025

Shanxi Medical University School and Hospital of Stomatology, Shanxi Bethune Hospital, Taiyuan, Shanxi, China.

Green lasers have a stronger effect on promoting osteoblast differentiation, which is critical for orthodontic tooth retention. This study investigated the impact of green laser photobiomodulation on orthodontic tooth retention in rats. A total of 100 male Sprague-Dawley rats were divided into two groups: Group A (control) and Group B (green laser irradiation).

View Article and Find Full Text PDF

Ultrafine fiber-mediated transvascular interventional photothermal therapy using indocyanine green for precision embolization treatment.

Biomater Sci

January 2025

Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen, Guangdong 518055, China.

Photothermal treatment has attracted immense interest as a promising approach for biomedical applications such as cancer ablation, yet its effectiveness is often limited by insufficient laser penetration and challenges in achieving efficient targeting of photothermal agents. Here we developed a transvascular interventional photothermal therapy (Ti-PTT), which employed a small-sized microcatheter (outer diameter: 0.60 mm, 1.

View Article and Find Full Text PDF

MOF-derived intelligent arenobufagin nanocomposites with glucose metabolism inhibition for enhanced bioenergetic therapy and integrated photothermal-chemodynamic-chemotherapy.

J Nanobiotechnology

January 2025

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.

Bioenergetic therapy based on tumor glucose metabolism is emerging as a promising therapeutic modality. To overcome the poor bioavailability and toxicity of arenobufagin (ArBu), a MOF-derived intelligent nanosystem, ZIAMH, was designed to facilitate energy deprivation by simultaneous interventions of glycolysis, OXPHOS and TCA cycle. Herein, zeolitic imidazolate framework-8 was loaded with ArBu and indocyanine green, encapsulated within metal-phenolic networks for chemodynamic therapy and hyaluronic acid modification for tumor targeting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!