Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A discrete ordinates code is developed with which to compute the beam spread function (BSF) without invoking the small-angle scattering approximation or performing Monte Carlo calculations. The computed BSF is used to predict the response of a detector versus its distance to the origin of a highly collimated beam, its angle with respect to the beam, and the two local angles that specify the detector orientation. Numerical results have been obtained for water models that simulate a clear ocean, a coastal ocean, and a turbid harbor. Six orders of magnitude or more change in the detector response caused by scattered photons can be predicted for different detector locations while simultaneously obtaining small changes for different detector orientations. This capability is useful for assessment of the sensitivity of the detector response to the interpretation of time-independent underwater imaging systems or visibility models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.41.006276 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!