The ability of individual species to tolerate or accumulate heavy metal pollutants has been investigated widely. Although invasive species may become established more easily in disturbed environments, relatively little is known about how an ability to tolerate pollutants might give invasive species a competitive advantage. This study is part of a series of experiments investigating native and invasive species interactions with chemical pollution and other forms of disturbance. The purpose of this experiment was to investigate the effects of lead on the growth of Lythrum salicaria. We exposed plants to different concentrations of lead and measured different growth parameters, such as biomass, length, leaf number, and biomass allocation to roots. For most measures, plants grown in lead-free conditions were larger than plants exposed to lead. Plants in the low (500 mg/l) and medium (1,000 mg/l) lead treatments did not differ from each other, while plants in the high (2,000 mg/l) lead treatment were significantly smaller. However, the biomass allocation to roots was not significantly different among treatments. Although their growth is affected, individuals of Lythrum salicaria demonstrated tolerance to lead contamination, which may aid in their colonization in lead-polluted wetlands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0269-7491(02)00144-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!