Studies of myosin isoforms in muscle cells: single cell mechanics and gene transfer.

Clin Orthop Relat Res

Department of Orthopaedics, Biomedical Sciences Graduate Group, University of California, San Diego, CA, USA.

Published: October 2002

Myosin, the motor protein in skeletal muscle, is composed of two subunits, myosin heavy chain and myosin light chain. All vertebrates express a family of myosin heavy chain and myosin light chain isoforms that together are primary determinants of force, velocity, and power in muscle fibers. Therefore, appropriate expression of myosin isoforms in skeletal muscle is critical to proper motor function. Myosin isoform expression is highly plastic and undergoes significant changes in response to muscular injury, muscle disuse, and disease. Therefore, myosin isoform function and plasticity are highly relevant to clinical orthopaedic research, musculoskeletal surgery, and sports medicine. Muscle from frogs offers a special opportunity to study the structural basis of contractile protein function because single intact fibers can be isolated that maintain excellent mechanical stability, allowing for high-resolution studies of contractile performance in intact cells. The current authors summarize recent studies defining the myosin isoforms in muscle from frogs and the relationship between myosin isoforms and mechanical performance of intact single muscle cells. Preliminary studies also are described that show the potential for simple plasmid-based in vivo gene transfer approaches as a model system to elucidate the structural basis of muscle protein function in intact cells.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00003086-200210001-00007DOI Listing

Publication Analysis

Top Keywords

myosin isoforms
16
myosin
10
muscle
9
isoforms muscle
8
muscle cells
8
gene transfer
8
skeletal muscle
8
myosin heavy
8
heavy chain
8
chain myosin
8

Similar Publications

While acute exercise affects sarcoplasmic reticulum (SR) function, the impact of resistance training remains unclear. The purpose of the present study was to investigate SR Ca handling plasticity in response to moderate- and high-volume strength training in elite rowers. Twenty elite male (n = 12) and female (n = 8) rowers performed three weekly strength training sessions for 8 weeks and were randomly allocated to either perform 3 sets (3-SET) or progressive increase from 5 to 10 sets (10-SET) of 10 repetitions during the training period.

View Article and Find Full Text PDF

Cold-water fishes, such as Brook trout (Salvelinus fontinalis), are being challenged by the consequences of climate change. The ability of these fish to acclimate to warmer environmental conditions is vital to their survival. Acclimation to warmer water may allow brook trout to reduce the metabolic costs of higher temperatures.

View Article and Find Full Text PDF

Background: Pulmonary hypertension (PH) often leads to right ventricle (RV) failure, a significant cause of morbidity and mortality. Despite advancements in PH management, progression to RV maladaptation and subsequent failure remain a clinical challenge. This study explored the effect of paroxetine, a selective serotonin reuptake inhibitor (SSRI), on RV function in a rat model of PH, hypothesizing that it improves RV function by inhibiting G protein-coupled receptor kinase 2 (GRK2) and altering myofilament protein phosphorylation.

View Article and Find Full Text PDF

A Drosophila cardiac myosin increases jump muscle stretch activation and shortening deactivation.

Biophys J

January 2025

Department of Biological Sciences & Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York. Electronic address:

Stretch activation (SA), a delayed increase in force production after rapid muscle lengthening, is critical to the function of vertebrate cardiac muscle and insect asynchronous indirect flight muscle. SA enables or increases power generation in muscle types used in a cyclical manner. Recently, myosin isoform expression has been implicated as a mechanism for varying the amplitude of SA in some muscle types.

View Article and Find Full Text PDF

Traditional transcriptomic studies often overlook the complex heterogeneity of skeletal muscle, as they typically isolate RNA from mixed muscle fibre and cell populations, resulting in an averaged transcriptomic profile that obscures fibre type-specific differences. This study assessed the potential of the recently developed Xenium platform for high-resolution spatial transcriptomic analysis of human skeletal muscle histological sections. Human vastus lateralis muscle samples from two individuals were analysed using the Xenium platform and Human Multi-Tissue and Cancer Panel targeting 377 genes complemented by staining of successive sections for Myosin Heavy Chain isoforms to differentiate between type 1 and type 2 muscle fibres.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!