Regulation of somatolactin (SL) and the somatotropic axis was examined year-around at three different stocking times (spring, summer, and autumn) in a Mediterranean fish, the gilthead sea bream (Sparus aurata). The overall timing of plasma growth hormone (GH) increase was similar among trials (late spring-early summer), but the range of variation year-around was different and followed changes in food intake. Total plasma insulin-like growth factor-I primarily followed changes on growth rates, and a close positive correlation between IGF-I and thermal-unit growth coefficient (TGC) was found irrespective of fish stocking time. Thus, the activation of the somatotropic axis preceded always warm growth spurts, whereas the rise of SL in concurrence with low plasma cortisol levels was found at late autumn. This up-regulation of circulating SL titres preceded the winter inhibition of feeding, and it was more severe in big fish (spring and summer stocking times) than in small fish (autumn stocking time), growing with a relative high efficiency during the cold season despite of a severe hypertriglyceridemia and a high hepatosomatic index. These new insights provide good evidence for a different timing of GH and SL increases, and it is likely that the dominant role of SL in energy homeostasis is to be a mediator of the adaptation to fasting after replenishment of body fat stores, whereas GH and IGF-I are perceived as growth-promoting signals in times of food intake and increasing temperature and day-length.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0016-6480(02)00042-4DOI Listing

Publication Analysis

Top Keywords

gilthead sea
8
sea bream
8
bream sparus
8
sparus aurata
8
growth hormone
8
somatotropic axis
8
stocking times
8
spring summer
8
food intake
8
stocking time
8

Similar Publications

In this study, a pair of matured specimens of gilthead sea bream (Sparus aurata Linnaeus, 1758) were collected at a depth of approximately 20 m near Keelung Port, northern Taiwan (25°11'32″N, 121°47'8″E), on November 23, 2024. The specimens were identified and confirmed as S. aurata through both morphological and molecular analyses.

View Article and Find Full Text PDF

Fish Brain Cell Lines Can Be Infected with Adenoviral Vectors and Support Transgene Expression-An In Vitro Approach.

Int J Mol Sci

December 2024

Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain.

Host-pathogen interactions and the design of vaccines for aquaculture fish viruses are challenging and call for innovative approaches. This study explores the potential of adenoviral (Ad) vectors Ad5 and chimeric Ad5/40 as gene delivery tools for fish brain cells susceptible to neurotropic viruses. For this purpose, European sea bass () DLB-1 and gilthead seabream () SaB-1 brain cell lines were infected with Ad5 or Ad5/40 vectors expressing GFP, and we evaluated their capacity for infection by fluorescence microscopy and flow cytometry, as well as their antiviral innate immune response by the transcription of gene markers ( and ).

View Article and Find Full Text PDF

Ability of short-chain fatty acids to reduce inflammation and attract leucocytes to the inflamed skin of gilthead seabream (Sparus aurata L.).

Sci Rep

December 2024

Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain.

The aim of the study was to investigate the potential preventive use of short-chain fatty acids (SCFAs) to modulate inflammatory responses in gilthead seabream (Sparus aurata) skin. Initially, in vitro experiments were conducted to evaluate the effects of various concentrations of butyric acid, acetic acid and propionic acid, as well as their combination, on the cytotoxicity and cell viability of three different cell lines. The results determined the safe concentration of SCFAs, which was then used for an in vivo study.

View Article and Find Full Text PDF

Hermetia illucens larvae oil as an alternative lipid source: Effects on immune function, antioxidant activity, and inflammatory response in gilthead seabream juveniles.

Comp Biochem Physiol B Biochem Mol Biol

December 2024

Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal.

Hermetia illucens larvae oil (HIO) is a promising new ingredient that can potentially be an alternative lipid source in aquafeeds. To assess its viability in gilthead seabream juvenile diets, a 10-week feeding trial was performed, and the effects on antioxidant, immune, and inflammatory responses were evaluated. Four diets were formulated to include HIO at increasing levels: 0, 4, 7.

View Article and Find Full Text PDF

Microplastics (MPs) are a threat of growing concern for living organisms as they exist in all ecosystems. The bidirectional communication between the gut, its microbiota, and the liver, has been conceptualized as gut-liver axis and may be influenced by environmental factors. MPs can cause intestinal and hepatic injuries, but there is still limited research exploring their impact on gut-liver axis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!