Functional reconstitution of the HIV receptors CCR5 and CD4 in liposomes.

Eur J Biochem

Institut de Pharmacologie et de Biologie Structurale; CNRS UMR 5089, Toulouse, France.

Published: November 2002

Reconstitution of membrane proteins allows their study in a membrane environment that can be manipulated at will. Because membrane proteins have diverse biophysical properties, reconstitution methods have so far been developed for individual proteins on an ad hoc basis. We developed a postinsertion reconstitution method for CCR5, a G protein coupled receptor, with seven transmembrane alpha helices and small ecto- and endodomains. A His6-tagged version of CCR5 was expressed in mammalian cells, purified using the detergent N-dodecyl-beta-d-maltoside (DDM) and reconstituted into preformed liposomal membranes saturated with DDM, removing the detergent with hydrophobic polystyrene beads. We then attempted to incorporate CD4, a protein with a single transmembrane helix and a large hydrophilic ectodomain into liposomal membranes, together with CCR5. Surprisingly, reconstitution of this protein was also achieved by the method. Both proteins were found to be present together in individual liposomes. The reconstituted CCR5 was recognized by several monoclonal antibodies, recognized its natural ligand, and CD4 bound a soluble form of gp120, a subunit of the HIV fusion protein that uses CD4 as a receptor. Moreover, cells expressing the entire fusion protein of HIV bound to the liposomes, indicating that the proteins were intact and that most of them were oriented right side out. Thus, functional coreconstitution of two widely different proteins can be achieved by this method, suggesting that it might be useful for other proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1432-1033.2002.03213.xDOI Listing

Publication Analysis

Top Keywords

membrane proteins
8
liposomal membranes
8
achieved method
8
fusion protein
8
proteins
7
ccr5
5
protein
5
functional reconstitution
4
reconstitution hiv
4
hiv receptors
4

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

The Formation and Features of Massive Vacuole Induced by Nutrient Deficiency in Human Embryonic Kidney Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Cardiovascular Medicine, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, China.

Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.

Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles.

View Article and Find Full Text PDF

Background: Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear.

View Article and Find Full Text PDF

Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are emerging as an important class of drugs in the management of Type 2 Diabetes Mellitus (T2DM) and obesity. There are rising concerns of pulmonary aspiration with these medications due to drug-induced gastroparesis. While definitive association is uncertain, it is essential to be prudent and manage these patients as per the current evidence and recommendations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!