RNA interference consists in specific mRNA degradation in response to introduction of a double-stranded RNA, homologous in nucleotide sequence. RNA interference was found in eukaryotes and is used in genomics as a powerful method to determine the functions of genes with known nucleotide sequences. RNA interference is considered as a tool of protection against viruses and harmful consequences of mobile elements' transposals. The involvement of the components of RNA interference is considered in spermatogenesis of Drosophila melanogaster and regulation of the expression of genes in Caenorhabditis elegans responsible for temporal patterns of development. The role of RNQA interference in stem cell formation and functioning is also considered.
Download full-text PDF |
Source |
---|
PLoS Negl Trop Dis
January 2025
State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
Fatty acid and retinol binding proteins (FARs) are lipid-binding protein that may be associated with modulating nematode pathogenicity to their hosts. However, the functional mechanism of FARs remains elusive. We attempt to study the function of a certain FAR that may be important in the development of Nippostrongylus brasiliensis.
View Article and Find Full Text PDFInsect Sci
January 2025
Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China.
Cuticular proteins are essential for cuticle formation, molting, and survival in insects. However, functional analysis of cuticular proteins in the melon aphid has been limited. In this study, we identified an endocuticle structural glycoprotein (ESG) AgSgAbd-2-like in the melon aphid Aphis gossypii, which is a member of the RR-1 subfamily of the CPR (cuticular protein containing the conserved Rebers-Riddiford motif) chitin-binding proteins.
View Article and Find Full Text PDFInsect Sci
January 2025
Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
Reproductive diapause is an insect survival strategy in which reproduction temporarily halts in response to adverse environmental changes. This process is characterized by arrested ovarian development and lipid accumulation in females. A reduction in juvenile hormone (JH) biosynthesis is known to initiate reproductive diapause, but its regulatory mechanism remains unclear.
View Article and Find Full Text PDFParasitol Res
January 2025
Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic.
Tick-borne encephalitis virus (TBEV) is flavivirus transmitted to the host via tick saliva which contains various molecules with biological impacts. One of such molecules is Iristatin, a cysteine protease inhibitor from Ixodes ricinus that has been shown to have immunomodulatory properties. To characterize Iristatin in the relation to TBEV, we investigate whether this tick inhibitor has any capacity to influence TBEV infection.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Physiology and Pharmacology, Children's Health Research Institute and London Health Sciences Centre Research Institute, London, ON, Canada.
In this chapter, we provide a method for silencing target genes in epidermal cells via RNA interference. Specifically, we describe a protocol for transfection-mediated delivery of small interfering RNA oligonucleotides (siRNA). Functional assays are indispensable to characterize the biological consequences of gene knockdowns, and we also provide a method to analyze alterations in cell adhesion properties, consequent to knockdown of genes involved in this process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!