A stationary excitation focus produced in the sensorimotor cortex of a rabbit by rhythmic electrodermal paw stimulation was manifested in the reaction to a testing sound stimulus earlier indifferent for the animal. Regardless of the stimulated paw (left or right), reactions to the testing stimuli appeared approximately in the equal percent of cases (70.7% and 71.5%, respectively). After a single-trial induction of the "animal hypnosis" state, it was difficult to produce the dominant focus by simulation of the left paw, whereas the results of the right-paw stimulation did not differ from those obtained during control stimulation. Consequently, the influence of hypnosis on defensive stationary excitation foci in different hemispheres was not the same.

Download full-text PDF

Source

Publication Analysis

Top Keywords

stationary excitation
8
["animal hypnosis"
4
hypnosis" defensive
4
defensive dominant
4
dominant behavioral
4
behavioral aspect]
4
aspect] stationary
4
excitation focus
4
focus produced
4
produced sensorimotor
4

Similar Publications

Plasmon Dynamics in Nanoclusters: Dephasing Revealed by Excited States Evaluation.

J Chem Theory Comput

January 2025

Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States.

The photocatalytic efficiency of materials such as graphene and noble metal nanoclusters depends on their plasmon lifetimes. Plasmon dephasing and decay in these materials is thought to occur on ultrafast time scales, ranging from a few femtoseconds to hundreds of femtoseconds and longer. Here we focus on understanding the dephasing and decay pathways of excited states in small lithium and silver clusters and in plasmonic states of the π-conjugated molecule anthracene, providing insights that are crucial for interpreting optical properties and photophysics.

View Article and Find Full Text PDF

Data on full stationary wave-field measurement of a suspended steel plate punctually loaded.

Data Brief

February 2025

Institut Camille Jordan, UMR-CNRS 5208, École Centrale de Lyon, 36 Avenue Guy de Collongue, 69134, Écully, France.

The dataset presented contains the experimental structural response, in the frequency domain, of a suspended steel plate to a point force excitation. The plate is excited by a mechanical point force generated by a Brüel & kJær shaker with a white noise signal input from 3.125 Hz to 2000 Hz.

View Article and Find Full Text PDF

A brief introduction to the diffusion Monte Carlo method and the fixed-node approximation.

J Chem Phys

December 2024

Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Monte S. Angelo, I-80126 Napoli, Italy.

Quantum Monte Carlo (QMC) methods represent a powerful family of computational techniques for tackling complex quantum many-body problems and performing calculations of stationary state properties. QMC is among the most accurate and powerful approaches to the study of electronic structure, but its application is often hindered by a steep learning curve; hence it is rarely addressed in undergraduate and postgraduate classes. This tutorial is a step toward filling this gap.

View Article and Find Full Text PDF

Aging in a weighted ensemble of excitable and self-oscillatory neurons: The role of pairwise and higher-order interactions.

Chaos

January 2025

International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Bunkyo Ku, Tokyo 113 8654, Japan.

We investigate the aging transition in networks of excitable and self-oscillatory units as the fraction of inherently excitable units increases. Two network topologies are considered: a scale-free network with weighted pairwise interactions and a two-dimensional simplicial complex with weighted scale-free pairwise and triadic interactions. Without triadic interactions, the aging transition from collective oscillations to oscillation death (inhomogeneous stationary states) can occur either suddenly or through an intermediate state of partial oscillation.

View Article and Find Full Text PDF

The high abundance of acetone ((CH)C═O), which makes it a good candidate for oxygenated molecules, and the high reactivity of oxygen atoms in the first excited state O(D) are two well-known facts in the chemistry of the atmosphere. In this research, we prove that the singlet oxygen and acetone system is capable of proceeding through multiwell multipath reactions, leading to the production of several organic aerosols. Hence, the nature of species released by the (CH)C═O + O(D) reaction to air can be clarified by profound attention to the possible routes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!