The antibiotics AT2433-A1 and AT2433-B1 are two indolocarbazole diglycosides related to the antitumor drug rebeccamycin known to stabilize topoisomerase I-DNA complexes. This structural analogy prompted us to explore the binding of four indolocarbazole diglycosides with DNA and their capacity to interfere with the DNA cleavage-reunion reaction catalyzed by topoisomerase I. The molecular basis of the drug interaction with double-stranded DNA and with purified chromatin, with particular emphasis on the role of the carbohydrate moiety, was investigated by means of complementary spectroscopic techniques, including surface plasmon resonance and electric linear dichroism. We compared the DNA binding properties, sequence recognition, and effects on topoisomerase I-mediated DNA relaxation and cleavage of AT2433-A1 bearing a 2,4-dideoxy-4-methylamino-L-xylose residue, its dechlorinated analog AT2433-B1, the diastereoisomer iso-AT2433-B1 with an inverted aminosugar residue, and compounds 5H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-5,7(6H)-dione, 12-beta-D-glucopyranosyl-12,13-dihydro-6-methyl (JDC-108) and 5H-indolo[2,3-a]pyrrolo[3, 4-c]carbazole-5,7(6H)-dione, 12-(6-O-alpha-D-galacto-pyranosyl-beta-D-glucopyranosyl)-12,13-dihydro-6-methyl (JDC-277) with an uncharged mono- and disaccharide, respectively. The two antibiotics AT2433-A1 and AT2433-B1 proved to be highly cytotoxic to leukemia cells and this may be a consequence of their tight intercalative binding to DNA, preferentially into GC-rich sequences as inferred from DNase I footprinting studies and surface plasmon resonance measurements. Like the diastereoisomer iso-AT2433-B1, they have no inhibitory effect on topoisomerase I, in contrast to the uncharged diglycoside JDC-277, which stimulates DNA cleavage by the enzyme mainly at TG sites, as observed with camptothecin. Cytotoxicity measurements with CEM and CEM/C2 human leukemia cell lines sensitive and resistant to camptothecin, respectively, also suggested that topoisomerase I contributes, at least partially, to the mechanism of action of the neutral diglycoside JDC-277 but not to that of the cationic AT2433 compounds. Together, the results indicate that sequence-selective DNA interaction and topoisomerase I inhibition is controlled to a large extent by the stereochemistry of the diglycoside moiety.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.62.5.1215DOI Listing

Publication Analysis

Top Keywords

dna
9
dna binding
8
antibiotics at2433-a1
8
at2433-a1 at2433-b1
8
indolocarbazole diglycosides
8
surface plasmon
8
plasmon resonance
8
diastereoisomer iso-at2433-b1
8
diglycoside jdc-277
8
topoisomerase
7

Similar Publications

Los olvidados: Non-BRCA variants associated with Hereditary breast cancer in Mexican population.

Breast Cancer Res

January 2025

Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, 66451, Monterrey, Nuevo León, México.

Background: Hereditary predisposition to breast and ovarian cancer syndrome (HBOC) is a pathological condition with increased cancer risk, including breast (BC), ovarian cancer (OC), and others. HBOC pathogenesis is caused mainly by germline pathogenic variants (GPV) in BRCA1 and BRCA2 genes. However, other relevant genes are related to this syndrome diagnosis, prognosis, and treatment, including TP53, PALB2, CHEK2, ATM, etc.

View Article and Find Full Text PDF

Bi-targeting of thioredoxin 1 and telomerase by thiotert promotes cell death of myelodysplastic syndromes and lymphoma.

Biol Direct

January 2025

Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.

Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal.

View Article and Find Full Text PDF

Histone mutations (H3 K27M, H3 G34R/V) are molecular features defining subtypes of paediatric-type diffuse high-grade gliomas (HGG) (diffuse midline glioma (DMG), H3 K27-altered, diffuse hemispheric glioma (DHG), H3 G34-mutant). The WHO classification recognises in exceptional cases, these mutations co-occur. We report one such case of a 2-year-old female presenting with neurological symptoms; MRI imaging identified a brainstem lesion which was biopsied.

View Article and Find Full Text PDF

Comparison of whole genome sequencing performance from fish swabs and fin clips.

BMC Res Notes

January 2025

Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Centre for Molecular Biodiversity Research, Bonn, Germany.

Objective: Fin clipping is the standard DNA sampling technique for whole genome sequencing (WGS) of small fish. The collection of fin clips requires anaesthesia or even euthanisation of the individual. Swabbing may be a less invasive, non-lethal alternative to fin-clipping.

View Article and Find Full Text PDF

Background: DNA methylation plays a crucial role in mammalian development. While methylome changes acquired in the parental genomes are believed to be erased by epigenetic reprogramming, accumulating evidence suggests that methylome changes in sperm caused by environmental factors are involved in the disease phenotypes of the offspring. These findings imply that acquired sperm methylome changes are transferred to the embryo after epigenetic reprogramming.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!