Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit the growth of different cancer cell types, suggesting a broad role for their cyclooxygenase (COX) targets and eicosanoid products in tumor cell growth. Sulindac sulfide, a COX inhibitor, inhibited the growth of non-small-cell lung cancers (NSCLC) both in soft agar and as xenografts in nude mice. Importantly, the concentration of sulindac sulfide required to inhibit NSCLC cell growth greatly exceeded the concentration required to inhibit prostaglandin (PG) E(2) synthesis in NSCLC cells, suggesting that NSAID inhibition of cell growth is mediated by additional targets distinct from COX. Both sulindac sulfide and ciglitazone, a defined peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist, stimulated a promoter construct containing a PPAR response element linked to luciferase and potently inhibited NSCLC cell growth at similar concentrations, indicating a role for PPARgamma as a target of NSAID action in these cells. Overexpression of PPARgamma in NSCLC cells strongly inhibited the transformed growth properties of the cells, providing a molecular confirmation of the results obtained with the PPARgamma agonists. Increased expression of PPARgamma, as well as ciglitazone and sulindac sulfide induced expression of E-cadherin, which has been linked to increased differentiation of NSCLC. Despite the fact that SCLC cell lines expressed little or no cytosolic phospholipase A(2), COX-1, or COX-2, sulindac sulfide and PPARgamma agonists also inhibited the transformed growth of these lung cancer cells. We propose that PPARgamma serves as a target for NSAIDs that accounts for COX-independent inhibition of lung cancer cell growth.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.62.5.1207DOI Listing

Publication Analysis

Top Keywords

cell growth
24
sulindac sulfide
20
lung cancer
12
cancer cell
12
growth
10
peroxisome proliferator-activated
8
proliferator-activated receptor-gamma
8
nonsteroidal anti-inflammatory
8
anti-inflammatory drugs
8
inhibition lung
8

Similar Publications

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

Background: Tumor microenvironment (TME) plays a crucial role in tumor growth and metastasis. Exploring biomarkers that are significantly associated with TME can help guide individualized treatment of patients.

Methods: We analyzed the expression and survival of P4HB in pan-cancer through the TCGA database, and verified the protein level of P4HB by the HPA database.

View Article and Find Full Text PDF

Background: In response to iron deficiency and other environmental stressors, cyanobacteria producing siderophores can help in ameliorating plant stress and enhancing growth physiological and biochemical processes. The objective of this work was to screen the potential of Arthrospira platensis, Pseudanabaena limnetica, Nostoc carneum, and Synechococcus mundulus for siderophore production to select the most promising isolate, then to examine the potentiality of the isolated siderophore in promoting Zea mays seedling growth in an iron-limited environment.

Results: Data of the screening experiment illustrated that Synechococcus mundulus significantly recorded the maximum highest siderophore production (78 ± 2%) while the minimum production was recorded by Nostoc carneum (24.

View Article and Find Full Text PDF

RNA-binding motif protein RBM39 enhances the proliferation of gastric cancer cells by facilitating an oncogenic splicing switch in MRPL33.

Acta Pharmacol Sin

January 2025

Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.

Gastric cancer is a malignant gastrointestinal disease characterized by high morbidity and mortality rates worldwide. The occurrence and progression of gastric cancer are influenced by various factors, including the abnormal alternative splicing of key genes. Recently, RBM39 has emerged as a tumor biomarker that regulates alternative splicing in several types of cancer.

View Article and Find Full Text PDF

ZIC1 is a context-dependent medulloblastoma driver in the rhombic lip.

Nat Genet

January 2025

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.

Transcription factors are frequent cancer driver genes, exhibiting noted specificity based on the precise cell of origin. We demonstrate that ZIC1 exhibits loss-of-function (LOF) somatic events in group 4 (G4) medulloblastoma through recurrent point mutations, subchromosomal deletions and mono-allelic epigenetic repression (60% of G4 medulloblastoma). In contrast, highly similar SHH medulloblastoma exhibits distinct and diametrically opposed gain-of-function mutations and copy number gains (20% of SHH medulloblastoma).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!