A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of gravity and posture on lung mechanics. | LitMetric

Effect of gravity and posture on lung mechanics.

J Appl Physiol (1985)

Dipartimento di Medicina Sperimentale, Ambientale e Biotecnologie Mediche, Università di Milano-Bicocca, I-20052 Monza (MI), Italy.

Published: December 2002

The volume-pressure relationship of the lung was studied in six subjects on changing the gravity vector during parabolic flights and body posture. Lung recoil pressure decreased by approximately 2.7 cmH(2)O going from 1 to 0 vertical acceleration (G(z)), whereas it increased by approximately 3.5 cmH(2)O in 30 degrees tilted head-up and supine postures. No substantial change was found going from 1 to 1.8 G(z). Matching the changes in volume-pressure relationships of the lung and chest wall (previous data), results in a decrease in functional respiratory capacity of approximately 580 ml at 0 G(z) relative to 1 G(z) and of approximately 1,200 ml going to supine posture. Microgravity causes a decrease in lung and chest wall recoil pressures as it removes most of the distortion of lung parenchyma and thorax induced by changing gravity field and/or posture. Hypergravity does not greatly affect respiratory mechanics, suggesting that mechanical distortion is close to maximum already at 1 G(z). The end-expiratory volume during quiet breathing corresponds to the mechanical functional residual capacity in each condition.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00492.2002DOI Listing

Publication Analysis

Top Keywords

posture lung
8
changing gravity
8
lung chest
8
chest wall
8
lung
6
gravity posture
4
lung mechanics
4
mechanics volume-pressure
4
volume-pressure relationship
4
relationship lung
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!