Blood flow and muscle fatigue in SCI individuals during electrical stimulation.

J Appl Physiol (1985)

Department of Exercise Science, University of Georgia, Athens 30602, USA.

Published: February 2003

Our purpose was to measure blood flow and muscle fatigue in chronic, complete, spinal cord-injured (SCI) and able-bodied (AB) individuals during electrical stimulation. Electrical stimulation of the quadriceps muscles was used to elicit similar activated muscle mass. Blood flow was measured in the femoral artery by Doppler ultrasound. Muscle fatigue was significantly greater (three- to eightfold, P < or = 0.001) in the SCI vs. the AB individuals. The magnitude of blood flow was not significantly different between groups. A prolonged half-time to peak blood flow at the beginning of exercise (fivefold, P = 0.001) and recovery of blood flow at the end of exercise (threefold, P = 0.009) was found in the SCI vs. the AB group. In conclusion, the magnitude of the muscle blood flow to electrical stimulation was not associated with increased muscle fatigue in SCI individuals. However, the prolonged time to peak blood flow may be an explanation for increased fatigue in SCI individuals.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00736.2002DOI Listing

Publication Analysis

Top Keywords

blood flow
32
muscle fatigue
16
sci individuals
16
electrical stimulation
16
fatigue sci
12
blood
8
flow muscle
8
individuals electrical
8
peak blood
8
flow exercise
8

Similar Publications

Cinnamic acid lowers blood pressure and reverses vascular endothelial dysfunction in rats.

J Food Drug Anal

December 2024

Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad-22060, KP, Pakistan.

Cinnamic acid (CA) possesses important cardiovascular effects such as cardioprotective, antiatherogenic, antihyperlipidemic and antioxidant, which predicts its potential role in the treatment of hypertension. The study was executed to investigate the antihypertensive potential of CA in Sprague Dawley (SD) rats followed by evaluation in diverse vascular preparations. Invasive blood pressure monitoring technique was used in normotensive and hypertensive rats, under anesthesia.

View Article and Find Full Text PDF

Vascularized human brain organoids: current possibilities and prospects.

Trends Biotechnol

January 2025

Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands. Electronic address:

Human brain organoids (hBOs) are in vitro, 3D, self-organizing brain tissue structures increasingly used for modeling brain development and disease. Although they traditionally lack vasculature, recent bioengineering developments enable their vascularization, which partly recapitulates neurodevelopmental processes such as neural tube angiogenesis, formation of neurovascular unit (NVU)-like structures, and early barriergenesis. Although vascularized hBOs (vhBOs) are already used to model (defects in) neurovascular development, vascularization efficiency and other outcomes differ substantially between vascularization protocols and overall shortcomings should be considered.

View Article and Find Full Text PDF

Cardiorespiratory signals have long been treated as "noise" in functional magnetic resonance imaging (fMRI) research, with the goal of minimizing their impact to isolate neural activity. However, there is a growing recognition that these signals, once seen as confounding variables, provide valuable insights into brain function and overall health. This shift reflects the dynamic interaction between the cardiovascular, respiratory, and neural systems, which together support brain activity.

View Article and Find Full Text PDF

Emergency bleeding presents significant challenges such as high blood flow and rapid hemorrhaging. However, many existing hemostatic bandages face limitations, including the uncontrolled release of hemostatic agents, insufficient mechanical strength, poor adhesion, and complex manufacturing processes. To address these limitations, we developed a multifunctional hydrogel bandage for emergency hemostasis using a one-pot synthesis method.

View Article and Find Full Text PDF

Fluid shear stress (FSS) from blood flow sensed by vascular endothelial cells (ECs) determines vessel behavior, but regulatory mechanisms are only partially understood. We used cell state transition assessment and regulation (cSTAR), a powerful computational method, to elucidate EC transcriptomic states under low shear stress (LSS), physiological shear stress (PSS), high shear stress (HSS), and oscillatory shear stress (OSS) that induce vessel inward remodeling, stabilization, outward remodeling, or disease susceptibility, respectively. Combined with a publicly available database on EC transcriptomic responses to drug treatments, this approach inferred a regulatory network controlling EC states and made several notable predictions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!