Testosterone regulates 25-hydroxycholesterol production in testicular macrophages.

Biol Reprod

Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA.

Published: November 2002

Recently, we found that testicular macrophages produce 25-hydroxycholesterol (25-HC) and express 25-hydroxylase, the enzyme that converts cholesterol to 25-HC. In addition, 25-HC may be an important paracrine factor mediating the known interactions between macrophages and neighboring Leydig cells, because it is efficiently converted to testosterone by Leydig cells. The purpose of the present study was to determine if testosterone can regulate the production of 25-HC in rat testicular macrophages, representing a potential negative-feedback loop from Leydig cells. We found that expression of 25-hydroxylase mRNA and production of 25-HC by cultured testicular macrophages were significantly inhibited by testosterone at 10 micro g/ml. This dose of testosterone did not have an effect on cell viability and did not change the rate of mRNA degradation in the presence of actinomycin D. These studies indicate that production of 25-HC is negatively regulated by testosterone, which may be representative of a paracrine negative-feedback loop.

Download full-text PDF

Source
http://dx.doi.org/10.1095/biolreprod.102.007575DOI Listing

Publication Analysis

Top Keywords

testicular macrophages
16
leydig cells
12
production 25-hc
12
negative-feedback loop
8
testosterone
6
25-hc
6
macrophages
5
testosterone regulates
4
regulates 25-hydroxycholesterol
4
production
4

Similar Publications

Unlabelled: Autoimmune regulator (AIRE), a transcription factor expressed by medullary thymic epithelial cells, is required for shaping the self-antigen tolerant T cell receptor repertoire. Humans with mutations in suffer from Autoimmune Polyglandular Syndrome Type 1 (APS-1). Among many symptoms, men with APS-1 commonly experience testicular insufficiency and infertility, but the mechanisms causing infertility are unknown.

View Article and Find Full Text PDF

Transcriptional Profiling of Testis Development in Pre-Sexually-Mature Hezuo Pig.

Curr Issues Mol Biol

December 2024

College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.

Spermatogenesis is an advanced biological process, relying on intricate interactions between somatic and germ cells in testes. Investigating various cell types is challenging because of cellular heterogeneity. Single-cell RNA sequencing (scRNA-seq) offers a method to analyze cellular heterogeneity.

View Article and Find Full Text PDF

Xanthogranulomatous inflammation (XGI) is a rare, benign inflammatory condition of unclear pathogenesis, characterised by infiltration and subsequent destruction of normal tissue by lipid-laden macrophages together with lymphocytes and plasma cells. A 56-year-old gentleman was referred to the urology department of our hospital due to concerns that his right testicle felt firmer than his left over the preceding six months. He was investigated and subsequently underwent a right sided orchidectomy.

View Article and Find Full Text PDF

Widespread exposure to endocrine disruptors is associated with metabolic dysfunction and reproductive toxicity. Tetrahydrocurcumin (THC) has attracted attention as it offers protection against obesity and metabolic disorders due to its potent antioxidative and diverse biological properties but its influence and underlying mechanism of action on adipose tissue function and DEHP-induced testicular injury remain unknown. Our results showed that THC (100 mg kg day) administration for 27 weeks enlarged adipocytes while attenuating macrophage infiltration and IL-6 expression in the adipose tissue of male C57BL/6J mice exposed to 5 mg kg day of DEHP.

View Article and Find Full Text PDF

Exploring the interplay between inflammation and male fertility.

FEBS J

December 2024

UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal.

Male fertility results from a complex interplay of physiological, environmental, and genetic factors. It is conditioned by the properly developed anatomy of the reproductive system, hormonal regulation balance, and the interplay between different cell populations that sustain an appropriate and functional environment in the testes. Unfortunately, the mechanisms sustaining male fertility are not flawless and their perturbation can lead to infertility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!