High-oxygen and high-carbon dioxide containing atmospheres inhibit growth of food associated moulds.

Lett Appl Microbiol

ATO B.V., Department of Preservation Technology and Food Safety, Wageningen, The Netherlands.

Published: January 2003

Aims: The objective of this study was to determine the relationship between the growth of three foodborne fungi and high-oxygen modified atmosphere.

Methods And Results: Petri dishes were incubated in a series of connected flasks, which were placed in a climatized room and flushed continuously with the desired gas atmosphere. A combination of 80% oxygen and 20% carbon dioxide resulted in reduced growth of Rhizopus stolonifer, Botrytis cinerea and Penicillium discolor compared with ambient atmosphere conditions. Combining 80% oxygen and 20% carbon dioxide at 10 degrees C arrested growth of B. cinerea for 17 d while an elevated carbon dioxide concentration only inhibited growth up to 11 d. In addition, the peroxidase activity was doubled at 80% oxygen and decreased when 10% carbon dioxide was present.

Impact Of The Study: This study demonstrates the potential use of elevated oxygen levels in a modified atmosphere to inhibit food-associated mould growth.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1472-765x.2002.01211.xDOI Listing

Publication Analysis

Top Keywords

carbon dioxide
16
80% oxygen
12
oxygen 20%
8
20% carbon
8
growth
6
dioxide
5
high-oxygen high-carbon
4
high-carbon dioxide
4
dioxide atmospheres
4
atmospheres inhibit
4

Similar Publications

Gel immersion in endoscopy: Exploring potential applications.

World J Gastroenterol

January 2025

Department of Internal Medicine, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan.

The challenge of effectively eliminating air during gastrointestinal endoscopy using ultrasound techniques is apparent. This difficulty arises from the intricacies of removing concealed air within the folds of the gastrointestinal tract, resulting in artifacts and compromised visualization. In addition, the overlap of folds with lesions can obscure their depth and size, presenting challenges for an accurate assessment.

View Article and Find Full Text PDF

Although 3-nitrooxypropanol (3-NOP; Bovaer10) has been proven to reduce enteric methane (CH) by ∼30% in indoor systems of dairying when the additive is mixed throughout TMR and partial mixed ration (PMR) diets, there has been limited research to date on the CH abatement potential of 3-NOP when mixed within a diet based on perennial ryegrass silage only and fed to pregnant nonlactating dairy cows. To investigate the effect of 3-NOP supplementation on enteric CH emissions of pregnant nonlactating dairy cows, a 6-wk study was undertaken in which treatment cows were supplemented with 3-NOP mixed within grass silage, whereas control cows were offered grass silage without additive supplementation. Enteric CH, hydrogen (H), and carbon dioxide (CO) were measured using a GreenFeed machine.

View Article and Find Full Text PDF

Bicarbonate use reduces the photorespiration in Ottelia alismoides adapting to the CO-fluctuated aquatic systems.

Physiol Plant

January 2025

Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.

Underwater CO concentration fluctuates extremely in natural water bodies. Under low CO, the unique CO concentrating mechanism in aquatic plants, bicarbonate use, can suppress photorespiration. However, it remains unknown (1) to what extent bicarbonate use reduces photorespiration, (2) how exactly photorespiration varies between bicarbonate-users and CO-obligate users under CO-fluctuated environments, and (3) what are differences in Rubisco characteristics between these two types of aquatic plants.

View Article and Find Full Text PDF

Climate change has exacerbated precipitation variability, profoundly impacting vegetation dynamics and community structures in arid ecosystems. There remains a notable knowledge gap regarding the ecological effects of altered precipitation on crassulacean acid metabolism (CAM) plants and their interactions with other photosynthetic types. This study investigated the response of the typical obligate CAM plant Orostachys fimbriata to extended watering intervals (WI4-WI8) and various competitive patterns (M-M) with the C grass Melilotus officinalis and the C grass Setaria viridis through greenhouse experiments.

View Article and Find Full Text PDF

Interest in carbon dioxide (CO) sensors is growing rapidly due to the increasing awareness of the link between air quality and health. Indoor, high CO levels signal poor ventilation, and outdoor the burning of fossil fuels and its associated pollution. CO gas sensors based on integrated optical waveguides are a promising solution due to their excellent gas sensing selectivity, compact size, and potential for mass manufacturing large volumes at low cost.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!