Binding of alpha- and beta-D-galactopyranosides with different hydrophobic aglycons was compared using substrate protection against N-ethylmaleimide alkylation of single-Cys148 lactose permease. As demonstrated previously, methyl- or allyl-substituted alpha-D-galactopyranosides exhibit a 60-fold increase in binding affinity (K(D) = 0.5 mM), relative to galactose (K(D) = 30 mM), while methyl beta-D-galactopyranoside binds only 3-fold better. In the present study, galactopyranosides with cyclohexyl or phenyl substitutions, both in alpha and beta anomeric configurations, were synthesized. Surprisingly, relative to methyl alpha-D-galactopyranoside, binding of cyclohexyl alpha-D-galactopyranoside to lactose permease is essentially unchanged (K(D) = 0.4 mM), and phenyl alpha-D-galactopyranoside exhibits only a modest increase in binding affinity (K(D) = 0.15 mM). Nitro- or methyl-substituted phenyl alpha-D-galactopyranosides bind with significantly higher affinities (K(D) = 0.014-0.067 mM), and the strongest binding is observed with analogues containing para substituents. In contrast, D-galactopyranosides with a variety of large hydrophobic substituents (isopropyl, cyclohexyl, phenyl, o- or p-nitrophenyl) in beta anomeric configuration exhibit uniformly weak binding (K(D) = 1.0-2.3 mM). The results confirm and extend previous observations that hydrophobic aglycons of D-galactopyranosides increase binding affinity, with a clear predilection toward alpha-substituted sugars. In addition, the data suggest that the primary interaction between the permease and hydrophobic aglycons is directed toward the carbon atom bonded to the anomeric oxygen. The different positioning of this carbon atom in alpha- or beta-D-galactopyranosides thus may provide a rationale for the characteristic binding preference of the permease for alpha anomers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi0203076 | DOI Listing |
ACS Synth Biol
January 2025
College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
2'-Fucosyllactose (2'-FL) is the most abundant human milk oligosaccharides (HMOs). 2'-FL exhibits great benefits for infant health, such as preventing infantile diarrhea and promoting the growth of intestinal probiotics. The microbial cell factory technique has shown promise for the massive production of 2'-FL.
View Article and Find Full Text PDFJ Mol Biol
January 2025
Department of Chemistry and Biochemistry, California State University, San Bernardino, 5500 University Pkwy, San Bernardino, CA 92407, USA. Electronic address:
So far, site-directed alkylation (SDA) studies on transporters in the Major Facilitator Superfamily (MFS) are mostly performed at conditions different from the native cellular environment. In this study, using GFP-based site-directed PEGylation, ligand-induced conformational changes in the lactose permease of Escherichia coli (LacY), were examined in vivo for the first time. Accessibility/reactivity of single-Cys replacements in a Cys-less LacY-eGFP fusion background was tested using methoxy polyethylene glycol-maleimide-5K (mPEG-Mal-5K) in the absence or presence of a ligand, and the band-shift of the fusion upon PEGylation was detected by in-gel fluorescence.
View Article and Find Full Text PDFEnzyme Microb Technol
December 2024
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China. Electronic address:
Lacto-N-neotetraose (LNnT) is a primary solid component of human milk oligosaccharides (HMOs) with various promising health effects for infants. LNnT production by GRAS (generally recognized as safe) microorganisms has attracted considerable attention. However, few studies have emphasized Pichia Pastoris as a cell factory for LNnT's production.
View Article and Find Full Text PDFBioelectrochemistry
October 2024
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark. Electronic address:
Functional characterization of transporters is impeded by the high cost and technical challenges of current transporter assays. Thus, in this work, we developed a new characterization workflow that combines cell-free protein synthesis (CFPS) and solid supported membrane-based electrophysiology (SSME). For this, membrane protein synthesis was accomplished in a continuous exchange cell-free system (CECF) in the presence of nanodiscs.
View Article and Find Full Text PDFMicrob Physiol
April 2024
Institute for Molecular Physiology (IMP), Microbiology and Wine Research, Johannes Gutenberg-University, Mainz, Germany,
Introduction: C4-dicarboxylates (C4-DC) have emerged as significant growth substrates and signaling molecules for various Enterobacteriaceae during their colonization of mammalian hosts. Particularly noteworthy is the essential role of fumarate respiration during colonization of pathogenic bacteria. To investigate the regulation of aerobic C4-DC metabolism, the study explored the transcriptional control of the main aerobic C4-DC transporter, dctA, under different carbohydrate conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!