Papaya glutamine cyclase (PQC), a glycoprotein with a molecular mass of 32,980 Da, is a minor constituent of the papaya latex protein fraction. In neutral aqueous solutions, PQC adopts an all-beta conformation and exhibits high resistance to both proteolysis and denaturation. Complete unfolding of PQC requires a combination of an acidic medium and chemical denaturant such as urea or guanidine hydrochloride. The unfolding process takes place through formation of an intermediate A state that accumulates in the absence of chemical denaturants and displays all the features of a molten globule state. The different conformational states-N (native), A (acid-inactivated), and U (unfolded)-have been characterized by means of circular dichroism measurements, fluorescence spectroscopies, Stokes radii determinations, and 8-anilino-1-naphtalenesulfonic acid (ANS) binding characteristics. The unfolding pathways of the enzyme was further studied to estimate thermodynamic parameters characterizing both transitions N if A and A if U. In its A state, PQC is catalytically inefficient and highly susceptible to proteolysis. Also, its thermodynamic stability is decreased by some 3-5 kcal/mol. Conversion of the native to the A state involves digging up of five amino functions together with protonation of four to five acidic groups with pK(a)s, in the native state, around 2.7. It proceeds both cooperatively and reversibly although, in vitro, the refolding process is slow. Unfolding of the A state, on the other hand, occurs with a low degree of cooperativity. The intermediate A state thus seems to be only marginally more stable than the unfolded state. The role of suspected internal ion pairs in the stabilization of the native state of this enzyme is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bip.10234 | DOI Listing |
ChemMedChem
January 2025
Nankai University, State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, 94 Weijin Road, 300071, Tianjin, CHINA.
Membrane proteins, a principal class of drug targets, play indispensable roles in various biological processes and are closely associated with essential life functions. Their study, however, is complicated by their low solubility in aqueous environments and distinctive structural characteristics, necessitating a suitable native-like environment for molecular analysis. Nanodisc technology has revolutionized this field, providing biochemists with a powerful tool to stabilize membrane proteins and significantly enhance their research possibilities.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Departament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, Girona, Spain.
Biological invasions are a major threat to biodiversity, ecosystem functioning and nature's contributions to people worldwide. However, the effectiveness of invasive alien species (IAS) management measures and the progress toward achieving biodiversity targets remain uncertain due to limited and nonuniform data availability. Management success is usually assessed at a local level and documented in technical reports, often written in languages other than English, which makes such data notoriously difficult to collect at large geographic scales.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Facultad de Odontología, Universidad de los Andes, Chile, Las Condes, Chile.
Introduction: Certain aspects of indigenous communities, such as cultural practices and access to care, have been discussed as potential determinants of oral health. However, research on this topic remains limited. Understanding the factors influencing oral health and their perceptions is crucial for developing culturally appropriate interventions.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China.
Modular polyketide synthases (mPKSs) are multidomain enzymes in bacteria that synthesize a variety of pharmaceutically important compounds. mPKS genes are usually longer than 10 kb and organized in operons. To understand the transcriptional and translational characteristics of these large genes, here we split the 13-kb busA gene, encoding a 456-kDa three-module PKS for butenyl-spinosyn biosynthesis, into three smaller separately translated genes encoding one PKS module in an operon.
View Article and Find Full Text PDFEcol Lett
January 2025
Department of Biology, University of Konstanz, Konstanz, Germany.
Quantifying how co-acting global change factors (GCFs) influence plant invasion is crucial for predicting future invasion dynamics. We did a meta-analysis to assess pairwise effects of five GCFs (elevated CO, drought, eutrophication, increased rainfall and warming) on native and alien plants. We found that alien plants, compared to native plants, suffered less or benefited more for four of the eight pairwise GCF combinations, and that all GCFs acted additively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!