The adenovirus-encoded receptor internalization and degradation (RID) protein (previously named E3-10.4K/14.5K), which is composed of RIDalpha and RIDbeta subunits, down-regulates a number of cell surface receptors in the tumor necrosis factor (TNF) receptor superfamily, namely Fas, TRAIL receptor 1, and TRAIL receptor 2. Down-regulation of these "death" receptors protects adenovirus-infected cells from apoptosis induced by the death receptor ligands Fas ligand and TRAIL. RID also down-regulates certain tyrosine kinase cell surface receptors, especially the epidermal growth factor receptor (EGFR). RID-mediated Fas and EGFR down-regulation occurs via endocytosis of the receptors into endosomes followed by transport to and degradation within lysosomes. However, the molecular interactions underlying this function of RID are unknown. To investigate the molecular determinants of RIDbeta that are involved in receptor down-regulation, mutations within the cytoplasmic tail of RIDbeta were constructed and the mutant proteins were analyzed for their capacity to internalize and degrade Fas and EGFR and to protect cells from death receptor ligand-induced apoptosis. The results demonstrated the critical nature of a tyrosine residue near the RIDbeta C terminus; mutation of this residue to alanine abolished RID function. Mutating the tyrosine to phenylalanine did not abolish the function of RID, arguing that phosphorylation of the tyrosine is not required for function. These data suggest that this tyrosine residue forms part of a tyrosine-based sorting signal (Yxxphi). Additional mutations that target another potential sorting motif and several possible protein-protein interaction motifs had no discernible effect on RID function. It was also demonstrated that mutation of serine 116 to alanine eliminated phosphorylation of RIDbeta but did not affect any of the functions of RID that were examined. These results suggest a model in which the tyrosine-based sorting signal in RID plays a role in RID's ability to down-regulate receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC136796PMC
http://dx.doi.org/10.1128/jvi.76.22.11329-11342.2002DOI Listing

Publication Analysis

Top Keywords

tyrosine residue
12
receptor
9
receptor internalization
8
rid
8
cell surface
8
surface receptors
8
trail receptor
8
receptor down-regulation
8
death receptor
8
fas egfr
8

Similar Publications

A Gram-positive, aerobic, rod-shaped and spore-forming bacterium strain designation, B190/17, was isolated from an air monitoring sample of a Brazilian immunobiological production facility in 2017. The strain was not identifiable by biochemical methodology VITEK 2 or by MALDI-TOF MS with VITEK MS RUO and MALDI Biotyper. The 16S rRNA gene sequencing results showed 98.

View Article and Find Full Text PDF

Identification of a dual JAK3/TEC family kinase inhibitor for atopic dermatitis therapy.

Biochem Pharmacol

January 2025

Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Taizhou Institute of Zhejiang University, Zhejiang University, Taizhou 318000, China. Electronic address:

Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by recurrent eczematous lesions and severe itching, for which clinical treatments are limited. Selectively inhibiting Janus Kinase 3 (JAK3) and tyrosine kinase expressed in hepatocellular carcinoma (TEC) family kinases is proposed as a promising strategy to treat AD with possible reduced side effects and enhanced efficacy. In this study, we developed a dual JAK3/TEC family kinase inhibitor ZZB, which demonstrated potent inhibitory activity with IC values of 0.

View Article and Find Full Text PDF

Signaling pathways play key roles in many important biological processes such as cell division, differentiation, and migration. Phosphorylation site-specific antibodies specifically target proteins phosphorylated on a given tyrosine, threonine, or serine residue. Use of phospho-specific antibodies facilitates analysis of signaling pathway regulation and activity.

View Article and Find Full Text PDF

Tyrosine phosphorylation is an important post-translational modification that regulates many biochemical signaling networks in multicellular organisms. To date, 46,000 tyrosines have been observed in human proteins, but relatively little is known about the function and regulation of most of these sites. A major challenge has been producing recombinant phospho-proteins in order to test the effects of phosphorylation.

View Article and Find Full Text PDF
Article Synopsis
  • The vacuolar-type H-ATPase (V-ATPase) is essential for regulating pH levels in cells, and its activity is influenced by various pathways, particularly phosphorylation, which is not well understood.
  • In response to starvation, the kinase ABL1 phosphorylates a specific subunit of V-ATPase, ATP6V1B2, enhancing its assembly and function.
  • ABL1 inhibition disrupts V-ATPase assembly and lysosomal acidification, leading to impaired autophagy processes, including the degradation of damaged cellular components, highlighting ABL1's key role in cellular stress responses.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!