Local cerebral blood flow (CBF) was determined in 30 cerebral structures, including four structures of the whisker-to-barrel cortex sensory pathway, by the quantitative autoradiographic [(14)C]iodoantipyrine method during unilateral vibrissal stimulation in rats administered 0.1 or 1.0 mg/kg haloperidol or its control vehicle intravenously. The low dose of haloperidol had no significant effects on resting CBF or its enhancement by vibrissal stimulation. By standard t tests, the high dose statistically significantly lowered baseline CBF in frontal and visual cortex, hippocampus, dentate gyrus, inferior olive, cerebellar cortex, and the ventral posteromedial (VPM) thalamic nucleus on the unstimulated side, and raised baseline CBF in the lateral habenula; however, these changes lost statistical significance after Bonferroni correction for multiple comparisons. Neither dose had any effects on the increases in CBF evoked by vibrissal stimulation in the principal sensory trigeminal nucleus and barrel cortex, but the higher dose statistically significantly enhanced the percent increases in CBF due to the sensory stimulation in the spinal trigeminal nucleus and VPM thalamic nucleus. These results do not support a role for direct dopaminergic vasoactive mechanisms in the increases in CBF associated with neuronal functional activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.102.039081 | DOI Listing |
Cell Rep
December 2023
Center for Neural Science, New York University, 4 Washington Place, Rm. 621, New York, NY 10003, USA. Electronic address:
Sensory cortical areas are organized into topographic maps representing the sensory epithelium. Interareal projections typically connect topographically matched subregions across areas. Because matched subregions process the same stimulus, their interaction is central to many computations.
View Article and Find Full Text PDFAnat Rec (Hoboken)
February 2024
Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel.
Rats' whisking motion and objects' palpation produce tactile signals sensed by mechanoreceptors at the vibrissal follicles. Rats adjust their whisking patterns to target information type, flow, and resolution, adapting to their behavioral needs and the changing environment. This coordination requires control over the activity of the mystacial pad's intrinsic and extrinsic muscles.
View Article and Find Full Text PDFFront Cell Neurosci
July 2023
Facultad de Medicina, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain.
Diabetic neuropathy is the loss of sensory function beginning distally in the lower extremities, which is also characterized by pain and substantial morbidity. Furthermore, the locus coeruleus (LC) nucleus has been proposed to play an important role in descending pain control through the activation of α2-noradrenergic (NA) receptors in the spinal dorsal horn. We studied, on control and diabetic mice, the effect of electrical stimulation of the LC nucleus on the tactile responses in the caudalis division of the spinal trigeminal nucleus (Sp5C), which is involved in the relay of orofacial nociceptive information.
View Article and Find Full Text PDFCurr Biol
May 2023
Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003, USA. Electronic address:
Cortical activity patterns occupy a small subset of possible network states. If this is due to intrinsic network properties, microstimulation of sensory cortex should evoke activity patterns resembling those observed during natural sensory input. Here, we use optical microstimulation of virally transfected layer 2/3 pyramidal neurons in the mouse primary vibrissal somatosensory cortex to compare artificially evoked activity with natural activity evoked by whisker touch and movement ("whisking").
View Article and Find Full Text PDFInt J Mol Sci
December 2022
Anatomical Institute II, University of Cologne, 50931 Cologne, Germany.
Recovery of mimic function after facial nerve transection is poor. The successful regrowth of regenerating motor nerve fibers to reinnervate their targets is compromised by (i) poor axonal navigation and excessive collateral branching, (ii) abnormal exchange of nerve impulses between adjacent regrowing axons, namely axonal crosstalk, and (iii) insufficient synaptic input to the axotomized facial motoneurons. As a result, axotomized motoneurons become hyperexcitable but unable to discharge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!