PGE2 reduces arachidonic acid release in murine podocytes: evidence for an autocrine feedback loop.

Am J Physiol Cell Physiol

Division of Nephrology, Department of Medicine, Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5.

Published: February 2003

Increased glomerular prostaglandin E(2) (PGE(2)) production is associated with the progression of diseases such as membranous nephropathy, nephrotic syndrome, and anti-Thy1 nephritis. We investigated the signaling pathways that regulate the synthesis and actions of PGE(2) in glomerular podocytes. To study its actions, we assessed the ability of PGE(2) to regulate the production of its own precursor, arachidonic acid (AA), in a mouse podocyte cell line. PGE(2) dose-dependently reduced phorbol ester (PMA)-mediated AA release. Inhibition of PMA-stimulated AA release by PGE(2) was found to be cAMP/PKA-dependent, because PGE(2) significantly increased levels of this second messenger, whereas the inhibitory actions of PGE(2) were reversed by PKA inhibition and reproduced by the cAMP-elevating agents forskolin and IBMX. PGE(2) synthesis in this podocyte cell line increased fourfold at 60 min in response to PMA, coinciding with upregulation of cyclooxygenase (COX)-2 but not COX-1 levels. However, PGE(2) synthesis was significantly reduced by COX-1-selective inhibition, yet to a lesser extent by COX-2-selective inhibition. Our findings suggest that PMA-stimulated PGE(2) synthesis in mouse podocytes requires both basal COX-1 activity and induced COX-2 expression, and that PGE(2) reduces PMA-stimulated AA release in a cAMP/PKA-dependent manner. Such an autocrine regulatory loop might have important consequences for podocyte and glomerular function in the context of renal diseases involving PGE(2) synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00024.2002DOI Listing

Publication Analysis

Top Keywords

pge2 synthesis
16
pge2
13
pge2 reduces
8
arachidonic acid
8
actions pge2
8
podocyte cell
8
pma-stimulated release
8
synthesis
5
reduces arachidonic
4
release
4

Similar Publications

NLRP3: a key regulator of skin wound healing and macrophage-fibroblast interactions in mice.

Cell Commun Signal

January 2025

Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Hohhot, 010018, China.

Wound healing is a highly coordinated process driven by intricate molecular signaling and dynamic interactions between diverse cell types. Nod-like receptor pyrin domain-containing protein 3 (NLRP3) has been implicated in the regulation of inflammation and tissue repair; however, its specific role in skin wound healing remains unclear. This study highlights the pivotal role of NLRP3 in effective skin wound healing, as demonstrated by delayed wound closure and altered cellular and molecular responses in NLRP3-deficient (NLRP3) mice.

View Article and Find Full Text PDF

Functional characterization of eicosanoid signaling in development.

bioRxiv

January 2025

Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA.

20-carbon fatty acid-derived eicosanoids are versatile signaling oxylipins in mammals. In particular, a group of eicosanoids termed prostanoids are involved in multiple physiological processes, such as reproduction and immune responses. Although some eicosanoids such as prostaglandin E2 (PGE2) have been detected in some insect species, molecular mechanisms of eicosanoid synthesis and signal transduction in insects have been poorly investigated.

View Article and Find Full Text PDF

Selol is a semi-synthetic mixture of selenized triglycerides. The results of biological studies revealed that Selol exhibits several anticancer effects. However, studies on its potential anti-inflammatory activity are scarce, and underlying signaling pathways are unknown.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a chronic disease characterized by cartilage degradation, leading to bone friction, inflammation, stiffness, pain, and reduced mobility. This study investigates the therapeutic effects of porcine-derived chondroitin sulfate sodium (CS) on OA symptoms at both cellular and animal levels. study, HTB-94 chondrocytes were treated with inflammatory stimuli and CS (10, 50, 100, and 200 μg/mL) to assess the release of inflammatory mediators and the expression of genes and proteins related to cartilage synthesis and degradation.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a severe genetic muscle disease occurring due to mutations of the dystrophin gene. There is no cure for DMD. Using a dystrophinutrophin (DKO-Hom) mouse model, we investigated the PGE2/EP2 pathway in the pathogenesis of dystrophic muscle and its potential as a therapeutic target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!