We tested the hypothesis that hypoxia diminishes the expression and transport of neutral amino acids by system A in full-term human trophoblasts. Cytotrophoblasts from normal human placentas were cultured in standard conditions of 20% O(2) or in 1% and 3% O(2) for 24 h before assay. Neutral amino acid transport for systems A, ASC, and L was assayed at 24 and 72 h by the cluster-tray technique. Hypoxia during the initial 24 h of culture reduced system A transport by 82% in 1% O(2) and by 37% in 3% O(2) (P < 0.01) compared with standard conditions. Hypoxia during the latter 24 h of the 72 h in culture reduced system A transport by 55% in 1% O(2) and by 20% in 3% O(2) (P < 0.05) compared with standard conditions at 72 h. Hypoxia (1% O(2)) also reduced total amino acid transport by 40% in the more differentiated syncytiotrophoblasts present at 72 h. Northern analysis of trophoblasts in standard conditions showed that subtypes of human amino acid transporter A (hATA1 and hATA2) were each expressed in cytotrophoblasts and syncytiotrophoblasts. Hypoxia decreased expression of hATA1 and hATA2 in both trophoblast phenotypes. We conclude that hypoxia downregulates system A transporter expression and activity in cultured human trophoblasts.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00253.2002DOI Listing

Publication Analysis

Top Keywords

amino acid
16
standard conditions
16
human trophoblasts
12
neutral amino
8
acid transport
8
culture reduced
8
reduced system
8
system transport
8
compared standard
8
conditions hypoxia
8

Similar Publications

Background: The Immunoglobulin Heavy Chain (IGH) genomic region is responsible for the production of circulating antibodies and warrants careful investigation for its association with COVID-19 characteristics. Multiple allelic variants within and across different IGH gene segments form a limited set of haplotypes. Previous studies have shown associations between some of these haplotypes and clinical outcomes of COVID-19.

View Article and Find Full Text PDF

Background: Intracellular membraneless organelles formed by liquid-liquid phase separation (LLPS) function in diverse physiological processes and have been linked to tumor-promoting properties. The nucleolus is one of the largest membraneless organelle formed through LLPS. Deubiquitylating enzymes (DUBs) emerge as novel therapeutic targets against human cancers.

View Article and Find Full Text PDF

Methanogenic archaea (methanogens) possess fascinating metabolic characteristics, such as the ability to fix molecular nitrogen (N). Methanogens are of biotechnological importance due to the ability to produce methane (CH) from molecular hydrogen (H) and carbon dioxide (CO) and to excrete proteinogenic amino acids. This study focuses on analyzing the link between biological methanogenesis and amino acid excretion under N-fixing conditions.

View Article and Find Full Text PDF

Azurin, a bacterial blue-copper protein, has garnered significant attention as a potential anticancer drug in recent years. Among twenty Pseudomonas aeruginosa isolates, we identified one isolate that demonstrated potent and remarkable azurin synthesis using the VITEK 2 system and 16S rRNA sequencing. The presence of the azurin gene was confirmed in the genomic DNA using specific oligonucleotide primers, and azurin expression was also detected in the synthesized cDNA, which revealed that the azurin expression is active.

View Article and Find Full Text PDF

Liquid crystal monomers induce placental development and progesterone release dysregulation through transplacental transportation.

Nat Commun

January 2025

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.

Embryonic and fetal development can be affected during gestation by exposure to xenobiotics that cross the placenta. Liquid crystal monomers (LCMs) are emerging contaminants commonly found in indoor environments; however, whether they can cross the placenta and affect placental development remains unexplored. Here, we develop an evaluation system that integrates human biomonitoring, uterine perfusion in pregnant rats, and placental cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!