LmrA confers multidrug resistance to Lactococcus lactis by mediating the extrusion of antibiotics, out of the bacterial membrane, using the energy derived from ATP hydrolysis. Cooperation between the cytosolic and membrane-embedded domains plays a crucial role in regulating the transport ATPase cycle of this protein. In order to demonstrate the existence of a structural coupling required for the cross-talk between drug transport and ATP hydrolysis, we studied specifically the dynamic changes occurring in the membrane-embedded and cytosolic domains of LmrA by combining infrared linear dichroic spectrum measurements in the course of H/D exchange with Trp fluorescence quenching by a water-soluble attenuator. This new experimental approach, which is of general interest in the study of membrane proteins, detects long-range conformational changes, transmitted between the membrane-embedded and cytosolic regions of LmrA. On the one hand, nucleotide binding and hydrolysis in the cytosolic nucleotide binding domain cause a repacking of the transmembrane helices. On the other hand, drug binding to the transmembrane helices affects both the structure of the cytosolic regions and the ATPase activity of the nucleotide binding domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-5793(02)03485-3 | DOI Listing |
Curr Opin Struct Biol
January 2025
School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China. Electronic address:
Nucleotide-binding and leucine-rich repeat (NLR) proteins are essential intracellular immune receptors in both animal and plant kingdoms. Sensing of pathogen-derived signals induces oligomerization of NLR proteins, culminating in the formation of higher-order protein complexes known as resistosomes in plants. The NLR resistosomes play a pivotal role in mediating the plant immune response against invading pathogens.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Biomedical Sciences, University of Padova, Padova, Italy.
The permeability transition (PT) is a permeability increase of the mitochondrial inner membrane causing mitochondrial swelling in response to matrix Ca. The PT is mediated by regulated channel(s), the PT pore(s) (PTP), which can be generated by at least two components, adenine nucleotide translocator (ANT) and ATP synthase. Whether these provide independent permeation pathways remains to be established.
View Article and Find Full Text PDFTurk J Pediatr
December 2024
Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara, Türkiye.
Background: The management of pediatric acute myeloid leukemia (AML) is based on the prognostic risk classification of initial leukemia. Targeted next-generation sequencing (NGS) is a reliable method used to identify recurrently mutated genes of pediatric AML and associated prognosis.
Methods: In this study, we retrospectively evaluated the prognostic, and therapeutic utility of a targeted NGS panel covering twenty-five genes, in 21 children with de novo and 8 with relapsed or secondary AML.
Int J Surg
December 2024
Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China.
Background: Benign prostatic hyperplasia (BPH) is a common disease in middle-aged and elderly men, and its etiology is not completely clear. Late-onset hypogonadism (LOH) is a relatively common disease in the aging process of men. BPH is often accompanied by varying degrees of LOH, and the pathogenesis and progression of the two diseases are related.
View Article and Find Full Text PDFEMBO J
January 2025
The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
ABCB1 is a broad-spectrum efflux pump central to cellular drug handling and multidrug resistance in humans. However, how it is able to recognize and transport a wide range of diverse substrates remains poorly understood. Here we present cryo-EM structures of lipid-embedded human ABCB1 in conformationally distinct apo-, substrate-bound, inhibitor-bound, and nucleotide-trapped states at 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!