Although apparently functionally unrelated, intracellular TRAFs and extracellular meprins share a region with conserved meprin and traf homology, MATH(1). Both TRAFs and meprins require subunit assembly for function. By structural analysis of the sequences, we provide an explanation of how meprins, which form tetramers, and TRAF molecules, which form trimers, can share homology. Our analysis suggests it is highly likely that the same oligomerization surface is used. The analysis has implications for the widely distributed group of proteins containing MATH domains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(02)03330-6DOI Listing

Publication Analysis

Top Keywords

tetramers traf
8
math homology
4
homology suggests
4
suggests shared
4
shared binding
4
binding surfaces
4
surfaces meprin
4
meprin tetramers
4
traf trimers
4
trimers functionally
4

Similar Publications

Distinct USP25 and USP28 Oligomerization States Regulate Deubiquitinating Activity.

Mol Cell

May 2019

Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia. Electronic address:

The evolutionarily related deubiquitinating enzymes (DUBs) USP25 and USP28 comprise an identical overall domain architecture but are functionally non-redundant: USP28 stabilizes c-MYC and other nuclear proteins, and USP25 regulates inflammatory TRAF signaling. We here compare molecular features of USP25 and USP28. Active enzymes form distinctively shaped dimers, with a dimerizing insertion spatially separating independently active catalytic domains.

View Article and Find Full Text PDF

Lys(63)-linked polyubiquitination of TRAF2 or TRAF6 is an essential step within the signal transduction cascade responsible for activation of p38, c-Jun N-terminal kinase, and the transcription factor NF-kappaB. Attachment of ubiquitin (Ub) to a TRAF, and conjugation of Ub molecules to form a polyUb chain, is catalyzed by a heterodimer composed of a catalytically active E2 (hUbc13), involved in covalent bond transfer, and hUev1a, an E2-like protein involved in substrate Ub binding. Given the key biochemical processes in which hUev1a is involved, it is important to determine the molecular basis of the catalytic mechanism for Lys(63)-linked protein ubiquitination.

View Article and Find Full Text PDF

Although apparently functionally unrelated, intracellular TRAFs and extracellular meprins share a region with conserved meprin and traf homology, MATH(1). Both TRAFs and meprins require subunit assembly for function. By structural analysis of the sequences, we provide an explanation of how meprins, which form tetramers, and TRAF molecules, which form trimers, can share homology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!