Bcl-2 can promote p53-dependent senescence versus apoptosis without affecting the G1/S transition.

Biochem Biophys Res Commun

Laboratoire de génétique et biologie cellulaire, Université de Versailles/St. Quentin-en-Yvelines, UPRESA-CNRS 8087, 45 avenue des Etats-Unis, Versailles cedex 78035, France.

Published: October 2002

With the aim to identify events involved in the determination of p53-dependent apoptosis versus growth arrest, we used rat embryo fibroblasts expressing a temperature-sensitive mutant (tsA58) of the SV40 large tumour antigen (LT). Heat-inactivation of LT leads to p53 activation and commitment to a senescent-like state (REtsA15 cell line) or apoptosis (REtsAF cell line). We report that senescence is associated with high levels of the anti-apoptotic Bcl-2 protein and a cell cycle arrest in G1 phase, whereas apoptosis is associated with low levels of Bcl-2 and a cell cycle arrest in G2 phase. Here we show that Bcl-2, which can inhibit apoptosis and proliferation, turns the apoptotic phenotype into a senescent-like phenotype in G2 phase. This result suggests that Bcl-2-dependent inhibition of apoptosis could be crucial for the commitment to replicative senescence, whereas its ability to inhibit G1 progression would not be required.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-291x(02)02454-3DOI Listing

Publication Analysis

Top Keywords

cell cycle
8
cycle arrest
8
arrest phase
8
apoptosis
6
bcl-2
4
bcl-2 promote
4
promote p53-dependent
4
p53-dependent senescence
4
senescence versus
4
versus apoptosis
4

Similar Publications

Rearrangements of cytokine receptor-like factor 2 gene (CRLF2) are present in ∼50% of B-lymphoblastic leukemia/lymphoma (B-ALL) with BCR::ABL1-like features. Herein, we report three patients with CRLF2-rearranged mixed phenotype acute leukemia (MPAL). All three cases were B/myeloid MPAL in young patients harboring P2RY8::CRLF2 or IGH::CRLF2 with additional genomic alterations in signaling (JAK and RAS) and cell cycle (CDKN2A/B) pathways, a genomic profile similar to that in BCR::ABL1-like B-ALL.

View Article and Find Full Text PDF

Hypermethylation of tumor suppressor genes is a hallmark of leukemia. The hypomethylating agent decitabine covalently binds, and degrades DNA (cytosine-5)-methyltransferase 1 (DNMT1). Structural similarities within DNA-binding domains of DNMT1, and the leukemic driver histone-lysine N-methyltransferase 2A (KMT2A) suggest that decitabine might also affect the latter.

View Article and Find Full Text PDF

Hypo-osmotic stress shifts transcription of circadian genes.

Biophys J

January 2025

Dept. of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd. Worcester, MA 01609. Electronic address:

Cells respond to hypo-osmotic stress by initial swelling followed by intracellular increases in the number of osmolytes and initiation of gene transcription that allow cells to adapt to the stress. Here, we have studied the genes that change expression under mild hypo-osmotic stress for 12 and 24 hours in rat cultured smooth muscle cells (WKO-3M22). We find shifts in the transcription of many genes, several of which are associated with circadian rhythm, such as per1, nr1d1, per2, dbp, and Ciart.

View Article and Find Full Text PDF

Recent advances in biomarkers for senescence: Bridging basic research to clinic.

Geriatr Gerontol Int

January 2025

Department of Advanced Senotherapeutics and Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.

In this review, we review the current status of biomarkers for aging and possible perspectives on anti-aging or rejuvenation from the standpoint of biomarkers. Aging is observed in all cells and organs, and we focused on research into senescence in the skin, musculoskeletal system, immune system, and cardiovascular system. Commonly used biomarkers include SA-βgal, cell-cycle markers, senescence-associated secretory phenotype (SASP) factors, damage-associated molecular patterns (DAMPs), and DNA-damage-related markers.

View Article and Find Full Text PDF

The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma.

BMC Pharmacol Toxicol

January 2025

Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!