Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To develop a computerised system that will assist the early diagnosis of fetal hypoxia and to investigate the relationship between the fetal heart rate variability and the fetal pulse oximetry recordings.
Design: Retrospective off-line analysis of cardiotocogram and FSpO2 recordings.
Setting: The Maternity Unit of the 2nd Department of Obstetrics and Gynaecology, Aretaieion Hospital, University of Athens.
Population: Sixty-one women of more than 37 weeks of gestation were monitored throughout labour.
Methods: Multiresolution wavelet analysis was applied in each 10-minute period of second stage of labour focussing on long term variability changes in different frequency ranges and statistical analysis was performed in the associated 10-minute FSpO2 recordings. Self-organising map neural network was used to categorise the different 10-minute fetal heart rate patterns and the associated 10-minute FSpO2 recordings.
Main Outcome Measures: Umbilical artery pH of < or = 7.20 and Apgar score at 5 minutes of < or = 7 formed the inclusion criteria of the risk group.
Results: After using k-means clustering algorithm, the two-dimensional output layer of the self-organising map neural network was divided into three distinct clusters. All the cases that mapped in cluster 3 belonged in the risk group except one. The sensitivity of the system was 83.3% and the specificity 97.9% for the detection of risk group cases.
Conclusions: A relationship between the fetal heart rate variability in different frequency ranges and the time in which FSpO2 is less than 30% was noticed. Fetal pulse oximetry seems to be an important additional source of information. Computerised analysis of the fetal heart rate monitoring and pulse oximetry recordings is a promising technique in objective intrapartum diagnosis of fetal hypoxia. Further evaluation of this technique is mandatory to evaluate its efficacy and reliability in interpreting fetal heart rate recordings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-0528.2002.01388.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!