Mechanisms of monocrotophos resistance in cotton bollworm, Helicoverpa armigera (Hübner).

Arch Insect Biochem Physiol

Key Lab of Monitoring and Management of Plant Disease and Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China.

Published: November 2002

AI Article Synopsis

  • Insensitive acetylcholinesterase (AChE) was found to be a resistance mechanism in cotton bollworms that are resistant to monocrotophos.
  • Researchers cloned the AChE gene and found it has a signal peptide, a mature protein sequence, and significant similarities to AChE from other insect species.
  • Analysis of AChE gene sequences revealed nine mutations, with the Ala/Thr mutation being a key factor in the bollworms' insensitivity to monocrotophos.

Article Abstract

Insensitive acetylcholinesterase was identified as a resistance mechanism by comparing biochemical analysis with a laboratory selected monocrotophos resistant cotton bollworm (RR: 200) and the susceptible strain. The cDNA encoding AChE was cloned by the method of RACE (rapid amplification of cDNA ends). The complete AChE gene deduced from the cDNA consisted of a putative signal peptide of 32 amino acid residues, a mature protein of 615 residues, 5' untranslated regions (UTR) of 315 bp and 3' UTR of 324 bp. The coding sequence had a high degree of homology to the AChE from other insect species reported in the GenBank. After comparing analysis of the entire AChE gene sequence from 5 resistant and 6 susceptible cotton bollworm individuals, nine mutations were identified. One of them, the Ala/Thr mutation, is likely to be responsible for the AChE insensitivity to monocrotophos.

Download full-text PDF

Source
http://dx.doi.org/10.1002/arch.10054DOI Listing

Publication Analysis

Top Keywords

cotton bollworm
12
ache gene
8
ache
5
mechanisms monocrotophos
4
monocrotophos resistance
4
resistance cotton
4
bollworm helicoverpa
4
helicoverpa armigera
4
armigera hübner
4
hübner insensitive
4

Similar Publications

The steroid hormone 20-hydroxyecdysone induces lipophagy via the brain-adipose tissue axis by promoting the adipokinetic hormone pathway.

J Biol Chem

January 2025

Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, China. Electronic address:

Lipophagy is a way to degrade lipids; however, the molecular mechanisms are not fully understood. Using the holometabolous lepidopteran insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the larval fat body undergoes lipophagy during metamorphosis, and lipophagy is essential for metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) induced lipophagy by promoting the expression of the peptide hormone adipokinetic hormone (AKH, the insect analog of glucagon) and the adipokinetic hormone receptor (AKHR).

View Article and Find Full Text PDF

Attraction and aversion of noctuid moths to fermented food sources coordinated by olfactory receptors from distinct gene families.

BMC Biol

January 2025

Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.

Background: Alternative food sources are crucial for the survival and reproduction of moths during nectar scarcity. Noctuid moths make a better use of fermented food sources than moths from other families, while the underlying molecular and genetic basis remain unexplored. As the fermentation progresses, yeasts lysis and the accumulation of metabolic byproducts alter the composition and the volatile release of the sugary substrates.

View Article and Find Full Text PDF

The steroid hormone 20-hydroxyecdysone inhibits RAPTOR expression by repressing Hox gene transcription to induce autophagy.

J Biol Chem

December 2024

Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China. Electronic address:

Regulatory-associated protein of TOR (RAPTOR) is a key component of TOR complex 1, which determines the lysosomal location and substrate recruitment of TOR complex 1 to promote cell growth and prevent autophagy. Many studies in recent decades have focused on the post-translational modification of RAPTOR; however, little is known about the transcriptional regulatory mechanism of Raptor. Using the lepidopteran insect cotton bollworm (Helicoverpa armigera) as model, we reveal the transcriptional regulatory mechanism of Raptor.

View Article and Find Full Text PDF

CYP6B6 mediated adaptation to capsaicinoids in the generalist Helicoverpa armigera and specialist H. assulta: Transcriptional response and metabolic detoxification.

Int J Biol Macromol

January 2025

State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:

Capsaicin and dihydrocapsaicin are the principal pungent compounds in hot peppers. The generalist Helicoverpa armigera and the specialist H. assulta are two of the few insects that can feed on hot pepper fruits.

View Article and Find Full Text PDF

The pink bollworm, (Saunders) (Lepidoptera: Gelechiidae) is a serious insect pest of cotton crop. The studies to evaluate the impact of abiotic factors on cotton pests' biology are limited. The current study was undertaken to determine the impact of abiotic factors (temperature, humidity, photoperiod) and an insecticide (lambda-cyhalothrin) on the biological aspects of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!