TNFerade Biologic (TNFerade) is a second-generation (E1-, E3-, and E4-deleted) replication-deficient adenovector carrying the transgene encoding for human tumor necrosis factor alpha (TNFalpha), regulated by the radiation-sensitive promoter Early Growth Response (Egr-1). We hypothesized that intratumoral injection of TNFerade followed by radiation would result in potentially therapeutic levels of TNFalpha with minimal toxicity. Three preclinical studies were conducted, the purpose of which was to characterize the toxicity and pharmacokinetics of TNFerade in conjunction with radiation in nude as well as immune-competent (Balb/c) mice. A total of 80 mice in the nude mouse toxicology study, all bearing human squamous cell carcinoma xenografts, 120 mice in the Balb/c study, and 33 nude mice in the pharmacokinetic study were used. Doses ranging from 4x10(9) to 4x10(10) particle units (pu) (4x10(11) pu in the Balb/c study) were explored, with and without radiation. In the nude mice studies, TNFerade was injected intratumorally, whereas in the Balb/c study, TNFerade was administered by subcutaneous injection. TNFerade was well tolerated. In the nude mice studies, no significant toxicity occurred in any dose group. In the Balb/c study, 6/40 mice at the top dose (4x10(11) pu) were sacrificed in moribund condition (5/20 in the TNFerade+radiation group, 1/20 in the TNFerade alone group). Necropsy showed local necrosis and ulceration at the site of the injection. No deaths or significant toxicity were observed at the lower dose levels (4x10(9) and 4x10(10) pu), indicating a large safety margin for initial studies in humans. The pharmacokinetic study demonstrated high sustained levels of TNFalpha in the tumor homogenate with no "spillover" to plasma, where TNFalpha levels were below the level of detection. Radiation increased intratumoral levels of TNFalpha by a factor of 12 (from 0.998 to 11.55 ng/g). In conclusion, a gene therapy approach with TNFerade, in combination with radiation, represents a potential way to utilize the potent anticancer activity of TNFalpha without systemic toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.cgt.7700518DOI Listing

Publication Analysis

Top Keywords

balb/c study
16
levels tnfalpha
12
nude mice
12
tnferade
10
tnferade biologic
8
human tumor
8
tumor necrosis
8
necrosis factor
8
factor alpha
8
injection tnferade
8

Similar Publications

Inflammation-proliferation transition plays a key role in the successful healing of a common burn type, second-degree burn. Gynura procumbens in vitro adventitious root nanohydrogel is currently being studied for its immunomodulatory to improve reparative environment. Root production and nanohydrogel preparation was done respectively by in vitro propagation and emulsion/ solvent diffusion with carbomer as a polymer.

View Article and Find Full Text PDF

Bovine mastitis is a considerable challenge within the dairy industry, causing significant financial losses and threatening public health. The increased occurrence of methicillin-resistant Staphylococcus aureus (MRSA) has provoked difficulties in managing bovine mastitis. Bacteriophage therapy presents a novel treatment strategy to combat MRSA infections, emerging as a possible substitute for antibiotics.

View Article and Find Full Text PDF

The role of mTOR activation in steroid-resistant asthma: insights from particulate matter-induced mouse model and patient studies.

Inflamm Res

January 2025

Institute of Allergy and Clinical Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.

Particulate matter (PM) exposure has been proposed as one of the causes of steroid resistance. However, studies investigating this using patient samples or animals are still lacking. Therefore, in this study, we aimed to investigate the changes in cytokines and mTOR (mammalian target of rapamycin) activation in patients with steroid resistant asthma and the role of mTOR in a mouse model of steroid resistant asthma induced by PM.

View Article and Find Full Text PDF

To investigate the effect of icariin (ICA) on hepatocellular carcinoma (HCC) and its autophagy/apoptosis mechanism in HCC. The anti-HCC mechanism of ICA was investigated using HCC cells treated with 20 µmol/L ICA. Cell viability and proliferation were assessed using CCK-8 and colony formation assays, respectively, while TUNEL staining evaluated anti-apoptotic effects.

View Article and Find Full Text PDF

immunotoxic evaluation of herbicides in RAW 264.7 cells.

J Toxicol Environ Health A

January 2025

Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.

Weeds are a concern in agriculture and the use of herbicides constitutes an effective, efficient, and economical way to control their growth. Recent discoveries of herbicides are promising for the management of resistant weeds. However, there is a gap in the knowledge of the toxic effects of some herbicides previously reported on immune cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!