High-frequency microsatellite instability (MSI-H) results from deficiency in nucleotide mismatch repair. It contributes significantly to carcinogenesis in the human colorectal mucosa. Here we study 41 colorectal and three other HNPCC-related cancers with MSI-H to provide comprehensive information on the mechanisms of inactivation of the two major proteins involved, hMLH1 and hMSH2. Seventeen of the patients had family histories meeting the criteria for Bethesda grades 1, 2 or 3. Of these familial cases, 14 (83%) had early-onset disease, defined on the basis of diagnosis prior to the age of 50, but in three the disease was of late onset (>50 years). A second subset of 20 patients had early onset disease without family history. The remaining seven patients were selected to allow comparisons with sporadic, late-onset disease, the molecular basis of which has been extensively reported elsewhere. We stratified the tumours initially on the basis of hMLH1 or hMSH2 protein deficiency, detected by immunohistochemistry, and then by analysis of germline and somatic mutation, mRNA transcription, loss of heterozygosity (LOH) at the hMLH1 and hMSH2 loci, and methylation status in two regions of the hMLH1 promoter. The functional significance of several of these changes in the MSI-H tumours was confirmed by comparisons with 16 tumours with low-frequency microsatellite instability and 56 tumours with stable microsatellites. As anticipated, patients with family histories usually showed germline mutation of hMSH2 or hMLH1. In many cases the residual normal allele was silenced in their tumours by loss of heterozygosity (LOH). The small subset of late-onset, sporadic cases confirmed the preponderance in this group of biallelic hMLH1 promoter methylation. In the early-onset, apparently sporadic subset there were 11 tumours with hMLH1 deficiency, five with hMSH2 deficiency and four with no detectable abnormality in expression of either protein. These showed a complex mixture of lesions, including germline and somatic mutations, promoter methylation, LOH, suppression of wild-type RNA by as yet undiscovered mechanisms, or no detectable abnormality in any of these parameters. Evidence is presented to indicate that methylation in proximal region of the hMLH1 promoter is a more reliable correlate of transcriptional silencing in colorectal cancers than methylation in upstream region. These observations have significant implications for management of patients with MSI-H tumours.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1205968DOI Listing

Publication Analysis

Top Keywords

germline somatic
12
hmlh1 hmsh2
12
hmlh1 promoter
12
mismatch repair
8
hnpcc-related cancers
8
microsatellite instability
8
hmlh1
8
patients family
8
family histories
8
loss heterozygosity
8

Similar Publications

Bone sarcomas and cancer predisposition syndromes.

Bull Cancer

January 2025

Department of Paediatric Oncology, Institut d'Haematologie et d'Oncologie Pédiatrique, Centre Léon-Bérard, Lyon, France. Electronic address:

Bone sarcomas, constituting less than 1% of malignant neoplasms across all age groups, are rare tumours possibly associated with genetic susceptibility syndromes. This review aims to provide recommendations for the detection of cancer predisposition syndromes associated with bone sarcomas and managing affected patients. Recommendations were formulated by a multidisciplinary working and reviewing group from GROUPOS and SFCE oncogenetic's group, including geneticists, oncologists, and radiologists.

View Article and Find Full Text PDF

DICER1-associated sarcoma is an emerging entity, defined by either somatic or germline dicer 1, ribonuclease III (DICER1) mutations and sharing characteristic morphologic features irrespective of the site of origin. In addition to the DICER1 driver mutation, concurrent genomic alterations, including tumor protein 53 (TP53) inactivation and RAS pathway activation, are frequently detected. Tumors that morphologically resemble malignant peripheral nerve sheath tumor (MPNST) have rarely been reported among DICER1 sarcomas and often pose diagnostic challenges.

View Article and Find Full Text PDF

An overview of BAP1 biological functions and current therapeutics.

Biochim Biophys Acta Rev Cancer

January 2025

Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Division of Human Genetics, Department of Internal Medicine, The Ohio State University Columbus, OH 43210, USA. Electronic address:

BRCA1-associated protein 1 (BAP1) is a tumor suppressor gene that was first identified in 1998. Germline loss of functional variants in BAP1 is associated with a tumor predisposition syndrome with at least four cancers; uveal melanoma (UM), malignant mesothelioma (MMe), renal cell carcinoma (RCC), and cutaneous melanoma (CM). Furthermore, somatic BAP1 mutations are important drivers for several cancers most notably UM, MMe, RCC, intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Purpose: To provide updated guidance regarding neoadjuvant chemotherapy (NACT) and primary cytoreductive surgery (PCS) among patients with stage III-IV epithelial ovarian, fallopian tube, or primary peritoneal cancer (epithelial ovarian cancer [EOC]).

Methods: A multidisciplinary Expert Panel convened and updated the systematic review.

Results: Sixty-one studies form the evidence base.

View Article and Find Full Text PDF

Random X-chromosome inactivation is a hallmark of female mammalian somatic cells. This epigenetic mechanism, mediated by the long noncoding RNA Xist, occurs in the early embryo and is stably maintained throughout life, although inactivation is lost during primordial germ cell (PGC) development. Using a combination of single-cell allele-specific RNA sequencing and low-input chromatin profiling on developing mouse PGCs, we provide a detailed map of X-linked gene reactivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!